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Event-related desynchronization (ERD) and synchronization (ERS) of electrocortical signals (e.g., electroenceph-
alogram [EEG] and magnetoencephalogram) reflect important aspects of sensory, motor, and cognitive cortical
processing. The detection of ERD and ERS relies on time–frequency decomposition of single-trial electrocortical
signals, to identify significant stimulus-induced changes in power within specific frequency bands. Typically,
these changes are quantified by expressing post-stimulus EEG power as a percentage of change relative to pre-
stimulus EEG power. However, expressing post-stimulus EEG power relative to pre-stimulus EEG power entails
two important and surprisingly neglected issues. First, it can introduce a significant bias in the estimation of ERD/
ERS magnitude. Second, it confuses the contribution of pre- and post-stimulus EEG power. Taking the human
electrocortical responses elicited by transient nociceptive stimuli as an example, we demonstrate that expressing
ERD/ERS as the average percentage of change calculated at single-trial level introduces a positive bias, resulting in
an overestimation of ERS and an underestimation of ERD. This bias can be avoided using a single-trial baseline
subtraction approach. Furthermore, given that the variability in ERD/ERS is not only dependent on the variability
in post-stimulus power but also on the variability in pre-stimulus power, an estimation of the respective contri-
bution of pre- and post-stimulus EEG variability is needed. This can be achieved using a multivariate linear re-
gression (MVLR) model, which could be optimally estimated using partial least square (PLS) regression, to
dissect and quantify the relationship between behavioral variables and pre- and post-stimulus EEG activities.
In summary, combining single-trial baseline subtraction approach with PLS regression can be used to achieve a
correct detection and quantification of ERD/ERS.

© 2013 Elsevier Inc. All rights reserved.
Introduction

Sensory,motor and cognitive events not only evoke time-locked and
phase-locked changes of ongoing electrocortical signal (e.g., event-
related potentials; ERPs and event-related fields; ERFs) (Luck, 2005),
but also induce time-locked and non-phase-locked modulations of on-
going oscillatory activity (Neuper and Klimesch, 2006; Pfurtscheller
and Lopes da Silva, 1999). These non-phase-lockedmodulations consist
of decreases (event-related desynchronization, ERD) and increases
(event-related synchronization, ERS) of oscillatory activity, usually con-
fined to a specific frequency band (Pfurtscheller and Aranibar, 1977;
Pfurtscheller and Lopes da Silva, 1999). The functional significance of
ERD and ERS varies greatly according to their temporal, spectral, and
spatial characteristics (Ohara et al., 2004). For example, ERD in the α
eee.hku.hk (Z.G. Zhang).
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band (8–12 Hz) has been hypothesized to reflect cortical activation,
whereas ERS in the same frequency band has been interpreted as a re-
flection of cortical inhibition (Pfurtscheller and Lopes da Silva, 1999).
ERD and ERS are extensively used to investigate sensorimotor processes
and cognitive tasks, as well as to discriminate neurological disorders
and psychometric variables (Fries, 2009; Gross et al., 2007; Neuper
and Klimesch, 2006; Pfurtscheller, 1992; Pfurtscheller et al., 1998;
Ploner et al., 2006; Schnitzler and Gross, 2005; Singer, 1993).

Tomeasure ERD and ERS, single-trial electrocortical responses in the
time domain are usually transformed in time–frequency distributions
(TFDs) (Makeig, 1993), which represent signal power as a function of
time and frequency, using various time–frequency decomposition
methods, such as windowed Fourier transform and continuous wavelet
transform (Mouraux and Iannetti, 2008; Zhang et al., 2012). The
resulting single-trial TFDs are usually expressed relative to a pre-
stimulus reference interval, to highlight stimulus-induced changes in os-
cillation magnitude (Grandchamp and Delorme, 2011). Such baseline-
correction procedure is used because it allows identifying sometimes
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subtle stimulus-induced changes of ongoing oscillatory power. It is typ-
ically achieved using one of two alternative approaches: (1) subtraction,
which assumes that ERD and ERS are added onto or subtracted from the
existing pre-stimulus power at each frequency, and (2) percentage (i.e.,
subtraction and division), which assumes that ERD and ERS are propor-
tionally decreased or increased with respect to the magnitude of
existing pre-stimulus oscillatory power (Grandchamp and Delorme,
2011; Pfurtscheller and Aranibar, 1977). In both approaches the base-
line correction can be performed on TFDs at single-trial, single-subject,
or group level (Grandchamp and Delorme, 2011; Mouraux and
Iannetti, 2008; Zhang et al., 2012). In any of those cases it is important
to consider the effect of trial-to-trial (or subject-to-subject) fluctuations
in themagnitude of pre-stimulus oscillatory activity on the ERD/ERS es-
timates. Particularly in the percentage approach,which consists in divid-
ing the difference between post-stimulus and pre-stimulus amplitudes
by the pre-stimulus amplitude, variations in pre-stimulus amplitude
can have a very strong effect on the ERD/ERS estimates. Indeed, if the
pre-stimulus amplitude is close to zero, even a very minor increase in
amplitude will yield a spuriously high percentage increase. Considering
that both pre- and post-stimulus amplitudes are always positive, the
distribution of percentage estimates across trials (or subjects) will be
highly asymmetrical, with a long tail of extremely high percentage
values. Therefore, averaging such percentage values across trials (or
subjects) will not provide a meaningful summary measure of ERD/ERS.

Across-trial variability in both pre- and post-stimulus amplitudes
may reflect important factors such as changes in the sensory input
and time-dependent habituation (Iannetti et al., 2008; Ohara et al.,
2004; Stancak et al., 2003), as well as fluctuations in vigilance and ex-
pectation (Del Percio et al., 2006; Mu et al., 2008; Ploner et al., 2006).
Thus, it is also crucial to dissect the contributions of pre- and post-
stimulus power to the variability of ERD/ERS, especially when the
trial-to-trial variability of pre-stimulus activity is significant and physi-
ologically relevant (Addante et al., 2011; Salari et al., 2012; van Dijk
et al., 2008;Wyart and Tallon-Baudry, 2009). Specifically, when investi-
gating the trial-to-trial relationship between ERD/ERS and behavior
variables (e.g., reaction times or intensity of perception), it is important
to explore whether such relationship is determined by pre- or post-
stimulus electrocortical activity, or both.

In summary, the correct interpretation of the functional significance
of ERD/ERS relies on two important but often neglected conditions:
(1) the baseline correction procedure should not introduce biases in
the estimated ERD/ERS magnitude, and (2) the contribution of pre-
and post-stimulus activity on the trial-to-trial ERD/ERS variability
should be correctly dissected and quantified.

Here, we address these points using an electroencephalographic
(EEG) dataset collected from a large population of healthy volunteers
(n = 96). First, we quantitatively compared the two widely used base-
line correction approaches (subtraction and percentage) at three differ-
ent levels (single-trial, single-subject, and group), and show that the
percentage procedure, especially when applied at single-trial level, can
yield very misleading results, and largely overestimate ERS and under-
estimate ERD. Since baseline-corrected TFDs are influenced by the
trial-to-trial fluctuations in the magnitude of pre-stimulus EEG activity,
the subtraction approach, albeit unbiased, is not adequate to dissect the
trial-to-trial relationships between electrocortical (pre- and post-
stimulus EEG activity) and behavioral variables. Thus we characterized
the trial-to-trial variability in pre-stimulus EEG power, and explored
its influence on the post-stimulus EEG activity and baseline-corrected
TFDs. Since ERD/ERS capture the mixed variability of pre- and post-
stimulus EEG power, it is difficult to determine whether the trial-
to-trial relationship between ERD/ERS and behavior variables is contrib-
uted by pre-stimulus activity, post-stimulus activity, or both. Therefore,
we propose amultivariate linear regression (MVLR)model solved using
the partial least squares (PLS) method to dissect the trial-to-trial rela-
tionships between electrocortical (pre- and post-stimulus EEG activity)
and behavioral variables (e.g., intensity of perception).
Materials and methods

Experimental design and EEG recording

Subjects
EEG data were collected from 96 healthy volunteers (51 females)

aged 21.6 ± 1.7 years (mean ± SD, range = 17–25 years). All sub-
jects gave their written informed consent andwere paid for their partic-
ipation. The local ethics committee approved the procedures.

Nociceptive stimulation
Radiant-heat stimuli were generated by an infrared neodymium yt-

trium aluminum perovskite (Nd:YAP) laser with a wavelength of
1.34 μm (Electronical Engineering, Italy). At this wavelength, laser
pulses activate directly nociceptive terminals in the most superficial
skin layers (Baumgartner et al., 2005; Iannetti et al., 2006). Laser pulses
were directed on a square area (5 × 5 cm) centered on the dorsum of
the left hand, and defined prior to the beginning of the experimental
session. A He–Ne laser pointed to the area to be stimulated. The laser
beam was transmitted via an optic fiber and its diameter was set at ap-
proximately 7 mm (~38 mm2) by focusing lenses. The pulse duration
was 4 ms, and four different energies (E1: 2.5 J; E2: 3 J; E3: 3.5 J; E4:
4 J) of stimulation were used. After each stimulus, the target of the
laser beam was shifted by approximately 1 cm in a random direction,
to avoid nociceptor fatigue or sensitization.

Experimental design
Prior to the EEG data collection,we delivered a small number of laser

pulses with different stimulus energies to familiarize the subjects with
the stimulation. During the EEG data collection we delivered ten laser
pulses at each of the four stimulus energies (E1–E4), for a total of 40
pulses. The order of stimulus energies was pseudorandomized. The
inter-stimulus interval (ISI) varied randomly between 10 and 15 s
(rectangular distribution). An auditory tone delivered between 3 and
6 s after the laser stimulation (rectangular distribution) prompted the
subjects to rate the intensity of the painful sensation elicited by the
laser stimulus, using a visual analog scale ranging from 0 (correspond-
ing to “no pain”) to 100 (corresponding to “pain as bad as it could be”).

EEG recording
Subjects were seated in a comfortable chair in a silent, temperature-

controlled room. They wore protective goggles and were asked to relax
their muscles and focus their attention towards the laser stimuli. EEG
data were recorded using 64 channels positioned according to the ex-
tended 10–20 system (Brain Products GmbH, Munich, Germany; pass
band: 0.01–100 Hz; sampling rate: 1000 Hz). The nose was used as
the reference channel, and all channel impedances were kept lower
than 10 kΩ. To monitor ocular movements and eye blinks, electro-
oculographic (EOG) signals were simultaneously recorded from 4 sur-
face electrodes: one pair placed over the upper and lower eyelids, the
other pair placed 1 cm lateral to the outer corner of the left and right
orbits.

EEG data analysis

EEG data preprocessing
EEG data were processed using EEGLAB (Delorme and Makeig,

2004), an open source toolbox running in the MATLAB environment,
and in-house MATLAB functions. Continuous EEG data were band-pass
filtered between 1 and 100 Hz. EEG epochs were extracted using a win-
dow analysis time of 1500 ms (500 ms pre-stimulus and 1000 ms post-
stimulus) and baseline corrected in the time domain using the pre-
stimulus interval (−500–0 ms). Trials contaminated by eye-blinks
andmovements were corrected using an infomax Independent Compo-
nent Analysis algorithm (runica) (Delorme and Makeig, 2004; Jung
et al., 2001; Makeig et al., 1997). In all datasets, these independent
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components had a large EOG channel contribution and a frontal scalp
distribution.

Note that the baseline correction in the time domain is a necessary
step for the subsequent time–frequency analysis, since, by minimizing
large amplitude discontinuities between consecutive trials and removing
large baseline signal offset of each trial, it ensures that the Independent
Component Analysis denoising and the artifact rejection are optimal.

Time–frequency analysis
A TFD of the EEG time course was obtained using a windowed

Fourier transform (WFT) with a fixed 250-ms Hanning window. These
TFD parameters allow achieving a good tradeoff between time resolu-
tion and frequency resolution within the explored range of frequencies
(Zhang et al., 2012).

The WFT yielded, for each time course, a complex time–frequency
estimate F(t, f) at each point (t, f) of the time–frequency plane,
extending from−500 to 1000 ms (in steps of 1 ms) in the timedomain,
and from 1 to 100 Hz (in steps of 1 Hz) in the frequency domain. The
resulting spectrogram, P(t, f) = |F(t, f)|2, represents the signal power
as a joint function of time and frequency at each time–frequency
point. When applied to across-trial averages of the response in the
time domain, the obtained TFDs only contain brain responses phase-
locked to stimulus onsets (ERPs). When applied to single-trial EEG
responses, the obtained TFDs contained brain responses both phase-
locked (ERPs) and non-phase-locked (ERS and ERD) to stimulus onsets.

To distinguish between phase-locked and non-phase-locked EEG re-
sponses, we calculated the phase-locking value (PLV; Lachaux et al.,
1999), for each subject, as follows:

PLV t; fð Þ ¼ 1
N

XN

n¼1

Fn t; fð Þ
Fn t; fð Þj j

�����

����� ð1Þ

where N is the number of trials.

Time–frequency baseline correction methods
In the time–frequency domain, the spectrograms were baseline-

corrected (reference interval: −400 to −100 ms relative to stimulus
onset) at each frequency f using two methods: subtraction and percent-
age. The reference interval was chosen to avoid the adverse influence of
spectral estimates biased bywindowing post-stimulus activity and pad-
ding values. It is important to note that the length of the reference inter-
val may affect the baseline-corrected TFDs. Theoretically, choosing a
long reference interval should lead to a more accurate estimation of
the true baseline (Kay, 1993). However, a long reference interval also
increases the risk of including unexpected artifacts that were not fully
removed during preprocessing. An empirical demonstration that the
choice of a reference interval ranging from −400 to−100 ms was ap-
propriate is provided in Section 1 of the Supplementary Materials.

In the subtraction method, the baseline correction was achieved by
subtracting the average of the baseline interval from all time points of
each frequency (Iannetti et al., 2008; Pfurtscheller and Lopes da Silva,
1999):

Ps t; fð Þ ¼ P t; fð Þ−R fð Þ ð2Þ

where R(f) is the averaged power spectral density of the signal within
the pre-stimulus baseline interval.

In the percentagemethod, the percent change from baselinewas ob-
tained by dividing the baseline-subtracted values of each frequency by
the average of the baseline values of that frequency (Schulz et al.,
2011; Zhang et al., 2012):

Pp t; fð Þ ¼ P t; fð Þ−R fð Þ½ �=R fð Þ � 100% : ð3Þ

The resulting baseline-corrected TFDs, representing stimulus-elicited
changes in oscillatory magnitude relative to the pre-stimulus baseline
interval, are expressed in μV2 for the subtraction method (Eq. (2)) and
in ER100% for the percentage method (Eq. (3)).

Both baseline correction methods (subtraction and percentage) were
applied on the EEG data at three different levels: (1) at single-trial level
the baseline correction was performed on each single-trial TFD; (2) at
single-subject level the baseline correction was performed, in each single-
subject, on the TFD averaged across all single trials; and (3) at group level
the baseline correction was performed on the group level averaged TFD.

Next, we performed a point-by-point one-way repeated-measure
ANOVA to assess the differences between TFDs that were baseline
corrected at single-trial, single-subject, and group levels. To account
for multiple comparisons, the significance level (p value) was corrected
using a false discovery rate (FDR) procedure (Benjamini and Hochberg,
1995).

We also proved that, using the percentage method, the average of
single-trial baseline-corrected TFDs (single-trial level) is more likely to
be larger than the baseline-corrected averaged TFDs (single-subject
level or group level) using mathematical derivation and simulated data
(see Section 2 of the Supplementary Materials).

Since we observed that baseline subtraction was unbiased (i.e., it
yielded identical TFDs regardless of whether it was performed at single-
trial, single-subject or group level; see Time–frequency responses after
baseline correction section), single-trial baseline subtraction was chosen
for the subsequent data analysis.

Estimating trial-to-trial variability in pre-stimulus EEG
Both when using the subtraction and the percentage baseline correc-

tion methods, baseline-corrected TFDs were influenced by the trial-
to-trial fluctuations in the magnitude of pre-stimulus EEG activity.
To characterize this influence, it is imperative to estimate the variability
of pre-stimulus EEG activity. Thus, we first calculated, for each trial, the
average power within the pre-stimulus interval of each frequency f. We
then explored, for each subject, the relationship between the trial-to-
trial variability of pre-stimulus power at each frequency f and trial
number n, using a multiple nonlinear regression (MnLR), as follows:

R fð Þ ¼ β1 fð Þ � nþ β2 fð Þ � n2 þ β3 fð Þ=nþ β4 fð Þ ð4Þ

where R(f) is the averaged power at frequency f in the pre-stimulus in-
terval, β1(f), β2(f), and β3(f) are the regression coefficients respectively
modeling how R(f) varied linearly, quadratically, and inversely with n,
and β4(f) is the coefficient modeling the constant part of R(f).

We performed a one-sample t-test to assesswhether each estimated
coefficient of each frequency (β1(f), i = 1–4) was different from zero.
To account for multiple comparisons, the significance level (p value)
was corrected using an FDRprocedure (Benjamini andHochberg, 1995).

Influence of the pre-stimulus EEG variability on post-stimulus EEG
The pre-stimulus variability in EEG power, quantified by performing

the analyses described in the previous paragraph, may significantly af-
fect the post-stimulus EEG activity and the baseline-corrected TFDs. To
evaluate the influence of the variability of pre-stimulus EEG power on
post-stimulus EEG power, we first calculated the mean power of pre-
stimulus EEG activity for each trial and frequency within the reference
interval (−400 to −100 ms relative to stimulus onset) prior to any
time-frequency baseline correction, and then classified TFDs for each
trial and frequency into four categories (grades 1–4 with decreasing
pre-stimulus EEG power; each grade has the same number of trials;
thus, grades are equivalent to 25% quartiles). Trials in each category
were averaged together, thus obtaining four average TFDs at each fre-
quency and for each subject. To evaluate the influence of the variability
of pre-stimulus EEG power on the baseline-corrected TFDs, the average
TFD of each of the four categories was baseline corrected using the
subtraction method (as in Eq. (2)). A point-by-point one-way repeated-
measures ANOVA was performed to assess the differences between
TFDs across subjects obtained from different grades of pre-stimulus EEG
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power (grades 1–4), both before and after baseline correction. To account
for multiple comparisons, the significance level (p value) was corrected
using an FDR procedure (Benjamini and Hochberg, 1995).

MVLR modeling and PLS analysis
Since ERD/ERS was obtained after baseline correction, the estimates

captured the mixed variability of pre- and post-stimulus EEG power.
Therefore, when the trial-to-trial relationship between ERD/ERS and be-
havioral variables needs to be investigated, it becomes difficult to deter-
mine whether such relationship is contributed by pre-stimulus activity,
post-stimulus activity, or both. To address this problem, we propose a
multivariate linear regression (MVLR) model solved using the partial
least squares (PLS) method to dissect the trial-to-trial relationships be-
tween electrocortical (pre- and post-stimulus EEG activity) and behav-
ioral variables (e.g., intensity of perception).

For each EEG trial, the relationship between the explanatory vari-
ables X(t,f) (EEG power at the time–frequency point (t,f)) and the pos-
sible dependent variables Y (e.g., behavioral responses like the
intensity of perception, experimental factors like pre-stimulus EEG fea-
tures, or any combination of these factors) can be modeled in a MVLR
model as follows:

Y ¼ αO þ
X

t; f

αt; f X t; fð Þ þ ε ð5Þ

where αt,f is the model coefficient of the EEG power at each time–
frequency point, αo is the intercept, and ε is the model residual.

Because (i) the number of explanatory variables X(t,f) wasmarkedly
larger than the number of observations (EEG trials), and (ii) there could
be strong collinearity among EEG activity at nearby time–frequency
points, as well as among the dependent variables, the ordinary least-
squares estimation is not appropriate to solve the above MVLR model.
PLS regression is an efficient method to overcome the above-
mentioned problems, as it extracts the maximal covariance between
the explanatory variables and the dependent variables by a small num-
ber of uncorrelated latent components (Abdi andWilliams, 2013). Here,
these latent components were estimated using the Nonlinear Iterative
Partial Least Squares algorithm (NIPALS;Wold et al., 2001). The number
of latent components in the PLS analysis was estimated using the coef-
ficient of determination (Steel et al., 1997), which calculates the per-
centage of the variance of the values fitted by the latent components
and the total variance of the dependent variables.

In PLS analysis, both MVLR model coefficients and the Variable
Importance on Projection (VIP) should be used as indexes to select im-
portant explanatory variables (Wold, 1995). Themodel coefficients rep-
resent the importance of each explanatory variable in the prediction of
the dependent variables, while the VIP values show the contribution of
each explanatory variable to modeling both the dependent and the ex-
planatory variables. Therefore, along with the model coefficients, VIP
values were calculated to explore the time–frequency features that
were important to explain the dependent variables.

To test whether the PLS performance was influenced by baseline
correction or by including a new dependent variable into the MVLR
model, we performed four parallel PLS regression analyses using differ-
ent explanatory and dependent variables. The explanatory variables
were either (1) TFDs of EEG activity without baseline correction
(P(t,f)) or (2) TFDs of EEG activity with baseline subtraction (Ps(t,f)).
The dependent variables were either (1) subjective intensity of percep-
tion or (2) both intensity of perception and pre-stimulus α-power. The
pre-stimulus α-power is calculated as the mean value within the pre-
stimulus interval (−400 to −100 ms) at α frequencies (8–12 Hz) for
each trial, and it is chosen as an additional dependent variable for the
purposes of (1) illustrating howbaseline correction influences the infer-
ence of the relationship between explanatory and dependent variables
if the variability of dependent variable is largely determined by pre-
stimulus EEG power, and (2) validating the correctness and robustness
of PLS analysis even if a newdependent variable is included in theMVLR
model.

After the model coefficients αt,f of the four MVLR models were esti-
mated, we performed a point-by-point two-way repeated-measures
ANOVA on themodel coefficients explaining the intensity of perception,
to assess the effects of the factors ‘baseline correction’ (two levels: P(t,f)
vs. Ps(t,f)), and ‘inclusion of a new dependent variable’ (two levels: with
pre-stimulus α-power vs. without pre-stimulus α-power). To account
for multiple comparisons, the significance level (p value) was corrected
using an FDR procedure (Benjamini and Hochberg, 1995).

To test whether the model coefficients αt,f and VIP values within the
post-stimulus interval were significantly different from those within
the pre-stimulus interval, we performed a bootstrapping test (Delorme
and Makeig, 2004; Durka et al., 2004; Hu et al., 2012). At each time–
frequency point (t. f), we extracted a collection of numerical samples
from the 96 subjects, and comparedwith a similar collection of numerical
samples in the baseline interval. The null hypothesis was that there was
no difference between the means of the two numerical samples, i.e., no
difference between the mean amplitude values within pre-stimulus
and post-stimulus intervals. The pseudo-t statistic of two populations
was calculated, and its probability distribution was estimated by permu-
tation testing (5000 times). The distribution of the pseudo-t statistics
from the baseline population was obtained, and the bootstrap p values
for the null hypothesis were generated. This procedure identified the
time–frequency regions inwhich themodeled coefficients andVIP values
were significantly different relative to the baseline interval (Hu et al.,
2012; Peng et al., 2012). To account for multiple comparisons, the signif-
icance level (expressed as p value)was corrected using an FDRprocedure
(Benjamini and Hochberg, 1995). Importantly, since model coefficients
and VIP values provide complementary information to select important
explanatory variables (Chong and Jun, 2005), it is recommended to com-
bine model coefficients and VIP in the PLS analysis to achieve an optimal
explanatory variable selection (Chong and Jun, 2005; Wold, 1995). Thus,
we extracted the intersection of the significant time–frequency regions,
inwhich bothmodel coefficients and VIP valueswere significantly differ-
ent relative to the baseline interval.

Results

Time–frequency responses without baseline correction

Fig. 1 shows the EEG responses elicited by laser stimulation in 96
subjects, at electrode C4 (contralateral to the stimulation side). The
top left panel shows the response in the time domain, characterized
by the large N2–P2 biphasic complex (LEPs). Single-subject average
waveforms (color-coded) are superimposed. The black waveform
represents the group level average. The top right panel shows the
group-level average of the TFDs obtained from the single-subject aver-
age LEPs. This TFD contains a clear response located at 100–400 ms
and 1–10 Hz. This time–frequency response (‘LEP’) corresponds to the
N2–P2 biphasic complex of LEPs in the time domain (Fig. 1, top left
panel). The bottom left panel shows the group-level PLVs, indicating
that only the ‘LEP’ responses were phase-locked to the stimulus onset,
while other TFD responses were not phase-locked to stimulus onset
and thus cannot be detected after single trials are averaged in the time
domain. The bottom right panel shows the group-level average of the
TFDs obtained from single-trial LEPs, containing both the large ‘LEP’ re-
sponse and a more subtle increase of power in the γ range, located at
100–300 ms and 60–80 Hz (Fig. 1).

Time–frequency responses after baseline correction

Fig. 2 B1–B3 shows the time–frequency responses after baseline sub-
traction (Eq. (2)), which revealed that laser stimuli elicited not only the
large phase-locked response (‘LEP’: 100–400 ms, 1–10 Hz), but also
two non-phase-locked responses, consisting of (1) a transient increase



Fig. 1. Laser-elicited EEG responses. Displayed signalswere recorded from96 subjects at electrodeC4 (nose reference). Top left: Time domain LEPwaveforms. Single-subject averagewave-
forms are color-coded and superimposed, and the group averagewaveform ismarkedwith black thick line. Top right:Group-level average of the TFDs obtained from single-subject average
LEPs, containing a clear response (‘LEP’) located at 100–400 ms and 1–10 Hz. Bottom left:Group-level average of phase-locking value obtained from single-trial LEPs, showing a large value
at ‘LEP’ region. Bottom right: Group-level average of the TFDs obtained from single-trial LEPs, containing both the large ‘LEP’ response, and a very subtle increase of power in the γ range,
located at 100–300 ms and 60–80 Hz.
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of power in theγ band (‘γ-ERS’: 100–300 ms, 60–80 Hz) and (2) a long-
lasting decrease of power in the α band (‘α-ERD’: 400–900 ms, 8–
12 Hz) (Fig. 2 B1–B3).

Crucially, these results were identical regardless of whether baseline
subtraction (Fig. 2 B1–B3) was performed at single-trial, single-subject
or group level (p = 1, FDR-corrected; Fig. 2 D1). In contrast, when base-
line correction was performed using the percentage method (Eq. (3)),
the results were dramatically different at single-trial, single-subject,
and group levels (Fig. 2 C1–C3) (p b 0.05, FDR-corrected; Fig. 2 D2).
When the baseline percentagewas computed at group level, the obtain-
ed time–frequency responses (i.e., ‘LEP’, ‘γ-ERS’, and ‘α-ERD’) are highly
similar to those identified using the subtraction method. However,
when the baseline percentage was computed at single-trial level, there
was a significantly stronger ‘γ-ERS’ (100–300 ms, 60–100 Hz), together
with a strong and diffuse increase of power for all frequencies during
the post-stimulus interval (0–900 ms, 1–100 Hz).

This large increase of post-stimulus power observed in single-trial vs.
group level baseline percentage approaches was significant (p b 0.05,
FDR-corrected). Importantly, this increase was not determined by the
stimulus, but reflected a bias introduced by the baseline percentage ap-
proach performed at single-trial level. Another practical consequence
of this bias is the disappearance of the ‘α-ERD’ (400–900 ms, 8–12 Hz)
(Fig. 2 C1). Thus, baseline correction performed using percentage intro-
duces a general overestimation of post-stimulus oscillation magnitudes.
In other words, the percentage approach overestimates the stimulus-
induced power increase (ERS), and underestimates the stimulus-
induced power decrease (ERD). A detailedmathematical demonstration
of the positive bias determined by the single-trial baseline percentage
approach, together with an analysis performed using simulated data is
provided in Section 2 of the Supplementary Materials.

While the maximal positive bias was determined by baseline
correcting the TFDs using the percentage approach at single-trial level,
a smaller, but nevertheless significant positive bias was also introduced
when the baseline correction was performed using the percentage ap-
proach at single-subject level (p b 0.05, single subject vs. group level
post-hoc comparison, FDR-corrected).

Variability in pre-stimulus EEG activity

We examined the trial-to-trial variability of the pre-stimulus EEG
power using the MnLR model of Eq. (4). We found a significant
across-trial variability of pre-stimulus power, which followed a hyper-
bolic function of the trial order n (modeled by the regressor 1/n, in
blue in Fig. 3). This variability was significant in several frequency
bands, although in different directions (negative in 7–15 Hz; positive
in 32–35 Hz, 62–65 Hz, and 90–92 Hz; p b 0.05, one sample t test and
FDR-corrected) (Fig. 3, top panel). In other words, the pre-stimulus
EEG power rapidly increased (or decreased) in the first few trials, and
then changedmore slowly in the following trials. To intuitively demon-
strate this variability, we displayed the magnitude of the pre-stimulus
α-power (8–12 Hz) throughout all single trials, across all subjects
(Fig. 3, bottom panel). Such pre-stimulus α-power showed a signifi-
cantly negativemodulationmodeled by the regressor 1/n, and the fitted
curve obtained from MnLR displayed a large increase in the first few
trials, followed by a smaller increase in the subsequent trials.

After baseline correction, the pre-stimulus EEG variability affects the
post-stimulus EEG

Without baseline correction, the variability in pre-stimulus EEG
power (modeled as four grades) did not affect the post-stimulus EEG
power (p N 0.05, one-way repeated-measures ANOVA, FDR-corrected),
except in some high-frequency regions (e.g., around 400 ms and
90 Hz) (Fig. 4, top panel). After baseline correction using the subtraction



Fig. 2. The performance of different baseline correction strategies. Left:Group-level average of the TFDs obtained from single-trial LEPs without baseline correction (expressed in μV2).Middle: Group-level average of the TFDs after baseline subtraction
(B1–B3) and percentage (C1–C3) at single-trial (B1, C1), single-subject (B2, C2) and group levels (B3, C3). The color scale represents the average decrease (ERD) or increase (ERS) of oscillation power (expressed in μV2 for subtraction and in ER100% for
percentage), relative to the pre-stimulus baseline interval (−400 to−100 ms). Right: One-way repeated-measures ANOVA to assess the effect of baseline correction level (single-trial, single-subject, and group) on the TFDs of stimulus-elicited EEG
responses. The color scale represents the statistic p value (FDR-corrected). Time–frequency regions with significant differences in the TFDs baseline-corrected at single-trial, single-subject, and group levels aremarked in blue. Non-significant regions
are marked in brown.
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Fig. 3. Variability in pre-stimulus EEG activity. Top: The pre-stimulus EEG power was modeled using an MnLR model (middle). Four regressors (n, n2, 1/n, 1; top) were used to model the
variability of pre-stimulus EEG power for each subject. The resulting coefficients (β values) for each frequency of each regressor were displayed in the bottom of this panel. Frequency
intervals, in which the obtained β values were significantly different from zero, were marked in gray (p b 0.05, one sample t test and FDR-corrected). Bottom: The pre-stimulus
α-power (8–12 Hz) showed a significantly negative modulation modeled by the regressor 1/n (marked with a yellow circle), which indicated a large initial increase, followed by a
smaller increase in the subsequent trials. Black bars represent the mean of pre-stimulus α-power across subjects for each trial (expressed as mean ± SEM). Blue solid line represents
the curve fitted to pre-stimulus α-power obtained from multiple nonlinear regression.
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approach, however, the variability in pre-stimulus EEG power was dra-
matically reflected in most post-stimulus time–frequency regions
(p b 0.05, one-way repeated-measures ANOVA, FDR-corrected), with
the sole exception of the low frequency phase-locked response (‘LEP’)
(Fig. 4, bottom panel). Therefore, a significant part of the trial-to-trial
variability ascribed to ERD/ERS after baseline correction was not deter-
mined by the stimulus, but instead consequent to the variability of the
pre-stimulus power.

MVLR model and PLS analysis

We used PLS analysis to dissect the contribution of pre- and post-
stimulus EEG variability on the trial-to-trial relationship between ERD/
ERS and dependent variables. We ran four parallel MVLR models and
PLS analyses to explain either one dependent variable (intensity of per-
ception) or two dependent variables (intensity of perception and pre-
stimulusα-power) using TFDs of EEG activitywith andwithout baseline
correction. Model coefficients explaining the intensity of perception
were virtually identical, regardless of whether the preliminary baseline
correction was performed, or whether the α-power was included as an
additional dependent variable (p N 0.05, two-way repeated-measures
ANOVA, FDR-corrected; Fig. 5). This finding indicates that the depen-
dent variable (‘intensity of perception’) was largely reflected by post-
stimulus EEG variability. As expected, model coefficients explaining
the pre-stimulus α-power were strong and positive in the pre-
stimulus region (−400 to−100 ms, 8–12 Hz)when TFDs of EEG activ-
ity without baseline correction P(t,f) were used as the explanatory var-
iables, but strong and negative in the post-stimulus region (0–1000 ms,
8–12 Hz) only when baseline-corrected TFDs (Ps(t,f)) were used as the
explanatory variables (Fig. 5).

Since both baseline correction and inclusion of a new dependent var-
iable did not affect the estimation of model coefficients explaining the

image of Fig.�3


Fig. 4. Influence of pre-stimulus EEG variability on post-stimulus EEG variability with andwithout baseline correction using the subtractionmethod. Top left:Without baseline correction, TFDs of laser-elicited EEG responses at different grades of pre-
stimulus EEG power for each frequency (Grade 1: the highest pre-stimulus EEG power for each frequency; Grade 4: the lowest pre-stimulus EEG power for each frequency; and Grades 2 and 3 in between). Top right:Without baseline correction, the
variability in pre-stimulus EEG power did not affect the post-stimulus EEG power except in some high-frequency regions (e.g., around 400 ms in latency and 90 Hz in frequency). The color scale represents the statistic p value (FDR-corrected). For
each of the different grades of pre-stimulus EEG power, time–frequency regions with significant differences in the TFDs are marked in blue, while non-significant regions are marked in brown. Bottom left: The TFDs of each grade were baseline
corrected using the subtraction approach. Bottom right:With baseline correction, the variability of pre-stimulus EEG powerwasmainly reflected inmost post-stimulus time–frequency regions, except the low-frequency phase-locked response (‘LEP’).
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Fig. 5. Partial least squares (PLS) analysis to assess the relationship between EEG activity and behavioral variables. PLS analysis was performed on TFDs of LEP responseswith andwithout
baseline correction (top and bottom panels respectively) to explain one dependent variable (intensity of perception; left) and two dependent variables (intensity of perception and pre-
stimulus α-power; right). Both baseline correction and inclusion of a new dependent variable did not affect the estimation of model coefficients explaining the intensity of perception
(p N 0.05, two-way repeated-measures ANOVA, FDR-corrected). In contrast, model coefficients explaining the pre-stimulusα-powerwere strongly affected by baseline correction, show-
ing a positive value at the pre-stimulus region (−400 to −100 ms, 8–12 Hz) without baseline correction and a negative value at the post-stimulus region (0–1000 ms, 8–12 Hz) with
baseline correction.
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intensity of perception, a representative performance of PLS analysis was
illustrated when TFDs of EEG activity without baseline correction were
used as the explanatory variables and intensity of perception was used
as dependent variable (Fig. 6). In this case, the coefficient of determina-
tion, expressing the percentage of the variance of the values fitted by the
latent components and the total variance of the dependent variables,
was 75 ± 12% across subjects. This observation indicates that the
extracted latent component could explain the greater part of the vari-
ance of the dependent variable. The calculated model coefficients and
Fig. 6. Partial least squares (PLS) analysis and the statistical determination of significant time–fr
baseline correction to explain the intensity of perception. As compared to the pre-stimulus in
outlined in red, pink, and black respectively. Model coefficients and VIP values jointly show
1–20 Hz), ‘α-ERD’ (600–900 ms, 6–13 Hz), and ‘γ-ERS’ (150–350 ms, 60–100 Hz). In addition,
by the intensity of perception, while EEG power of ‘α-ERD’ was negatively modulated by the i
VIP values showed that the fitting of the PLS model was commonly con-
tributed by three distinct time–frequency regions (‘LEP’: 100–400 ms,
1–20 Hz; ‘α-ERD’: 600–900 ms, 6–13 Hz; and ‘γ-ERS’: 150–350 ms,
60–100 Hz) (Fig. 6). The summarized VIP values were 1.46 ± 0.30,
0.94 ± 0.28, and 0.89 ± 0.29 for ‘LEP’, ‘α-ERD’, and ‘γ-ERS’, respectively.
In addition, the model coefficients of power spectral density, P(t,f), re-
vealed that the single-trial magnitude of ‘LEP’ and ‘γ-ERS’ (summarized
coefficients were [3.1 ± 1.4] × 10−5 and [1.1 ± 1.4] × 10−5 respec-
tively) was positively modulated by the intensity of perception, while
equency regions. PLS analysiswas performed on TFDs of laser-elicited EEG activity without
terval, significant differences of model coefficients, VIP values, and their intersection are
ed that the determination of PLS model was mainly contributed by ‘LEP’ (100–400 ms,
model coefficients revealed that EEG powers of ‘LEP’ and ‘γ-ERS’werepositivelymodulated
ntensity of perception (p b 0.05, FDR-corrected).
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the single-trial magnitude of ‘α-ERD’ (summarized coefficients were
[−1.3 ± 1.8] × 10−5) was negatively modulated by the intensity of
perception (p b 0.05, FDR-corrected).

Discussion

The present study yielded four main findings. First, performing the
baseline correction using the percentage approach introduces a positive
bias in the estimation of TFDs, resulting in ERDunderestimation and ERS
overestimation. In contrast, no bias is introducedwhen the baseline cor-
rection is performed using the subtraction approach. Second, the pre-
stimulus EEG power (especially in the α band) varies significantly
from trial to trial, following a hyperbolic function of the trial order.
Third, the variability of ERD and ERS is not only determined by the stim-
ulus, but is also greatly influenced by the trial-by-trial variability of pre-
stimulus EEG power. Fourth, MVLR model and PLS analysis allow
dissecting the contribution of both pre-stimulus and post-stimulus var-
iability to the trial-to-trial relationship between EEG activity and behav-
ioral variables, such as intensity of perception. In summary, combining
single-trial baseline subtraction approach with PLS regression allows
achieving a correct detection and comprehensive understanding of the
functional significance of stimulus-induced ERD/ERS.

Single-trial baseline correction of time–frequency representation

TFDs were identical regardless of whether the baseline subtraction
was performed at single-trial, single-subject, or group level (Fig. 2 B1–
B2), whereas TFDs obtained by baseline percentage at single-trial,
single-subject or group level were dramatically different (Fig. 2 C1–C3).
The baseline percentage introduced a strong positive bias of TFD magni-
tudes at single-trial level (Fig. 2 D2), which lead to the disappearance of
the ‘α-ERD’ (400–900 ms, 8–12 Hz) at single-trial level (Fig. 2 C1), and
to its reduction at single-subject level (Fig. 2 C2). In the field of pain elec-
trophysiology, this bias explains why the laser-induced ‘α-ERD’ is
normally reported when ERD/ERS are expressed using the baseline
percentage approach performed at single-subject level (Iannetti et al.,
2008; Mouraux et al., 2003; Ohara et al., 2004; Ploner et al., 2006), but
not when it is performed at single-trial level (Schulz et al., 2012b;
Zhang et al., 2012).

Given that the baseline percentage approach, despite having been
used in a large number of studies (Iannetti et al., 2008; Mouraux et al.,
2003; Ohara et al., 2004; Ploner et al., 2006; Schulz et al., 2012b;
Zhang et al., 2012), introduces a significant bias in the estimate of
time–frequency EEG responses, it is necessary that forthcoming studies
use the baseline subtraction approach, to avoid underestimating ERD
and overestimating ERS. It is important to highlight that the magnitude
of stimulus-induced changes in low frequencies (b10 Hz) are normally
several orders higher than those in high frequencies (N40 Hz). Thus, it is
recommended that TFDs obtained by baseline subtraction approach are
displayed using different scales for low and high frequencies (e.g.,
Fig. 2).

Variability in pre-stimulus EEG activity and its influence on ERS/ERD

Themagnitude of pre-stimulus EEG power of the present dataset sig-
nificantly varied across trials in several frequency bands (7–15 Hz, 32–
35 Hz, 62–65 Hz, and 90–92 Hz; Fig. 3, top panel). This variability
followed a hyperbolic function of the trial order, with a rapid change
across the first few trials, and a slower, steady change in the remaining
trials (e.g., Fig. 3, bottom panel). Such variability of pre-stimulus EEG
power did not affect the post-stimulus EEG power without baseline cor-
rection, except in some high-frequency regions (e.g., around 400 ms and
90 Hz) (Fig. 4, top panel). However, after baseline correction using the
subtraction approach, the variability of pre-stimulus EEG powerwas dra-
matically reflected in a large number of post-stimulus time–frequency
regions, except the low-frequency phase-locked response corresponding
to the vertex ERP in the time domain (‘LEP’) (Fig. 4, bottom panel).
Therefore, after baseline correction, the trial-to-trial variability of ERD/
ERS is not only determined by the stimulus, but heavily affected by the
pre-stimulus variability (Hu et al., 2013). In particular, as demonstrated
in Eqs. (2)and (3), the ERD variance was largely influenced by the vari-
ability of pre-stimulus EEG power, while the ERS variance was largely
influenced by the variability of post-stimulus EEG power (Hu et al.,
2013).

Thus, the trial-to-trial variability of ERD/ERS reflects the combination
of pre- and post-stimulus EEG variability. In otherword, changes of ERD/
ERS could reflect mixed variability of changes in the state of the system
(reflected in pre-stimulus EEG power) (Del Percio et al., 2006; Hu et al.,
2013; Laufs et al., 2003) and changes induced by the stimulus or task
(reflected in post-stimulus EEG power) (Peng et al., 2012; Ploner et al.,
2006; Stancak et al., 2003). To dissect the contributions of such different
physiological determinants of ERD/ERS, it is mandatory to estimate reli-
ably the variability of both pre- and post-stimulus EEG power (Hu et al.,
2013). Unfortunately, even performing an unbiased baseline correction
(i.e., using the subtraction approach), it is not sufficient to isolate the
contribution of pre- and post-stimulus EEG to the trial-to-trial ERD/
ERS variability, especially when the pre-stimulus EEG variability is evi-
dent and physiologically or psychologically relevant.

MVLR modeling and PLS analysis: beyond single-trial baseline correction

The fact that any single-trial baseline correction approach mixes
the variability of both pre- and post-stimulus EEG power makes the
interpretation of the trial-to-trial relationship between ERD/ERS and
behavioral/experimental variables inappropriate. The MVLR modeling
and PLS analysis allow solving this problem, by modeling simulta-
neously pre- and post-stimulus EEG power, and thus calculating their
respective contributions to ERD/ERS. Since the PLS analysis identifies
the maximal covariance between explanatory variables (e.g., EEG
power) and dependent variables (e.g., the intensity of perception)
using a small number of uncorrelated latent components (Abdi and
Williams, 2013), it has two important advantages compared to tradi-
tional mass-univariate analyses (Wold et al., 2001). First, PLS works
effectively when the number of explanatory variables is larger than
the number of observations (for example, in the present study, we esti-
mated 100 × 1500 model coefficients using 40 trials only). Second, PLS
works effectively even when there is strong collinearity among the ex-
planatory variables or dependent variables (for example, in the present
study, the strong correlation between power spectral density of nearby
time–frequency points). Because of such advantages, PLS analysis
allows better exploration of the relationships between TFDs of EEG re-
sponses and behavioral variables (e.g., intensity of perception). Further-
more, the differential contribution of the variability in pre- and post-
stimulus EEG power in determining the behavioral variable is reflected
in the estimated model coefficients (e.g., Fig. 5).

In the present study, the four parallel MVLR models (explaining ei-
ther one dependent variable [intensity of perception] or two dependent
variables [intensity of perception and pre-stimulus α-power] using
TFDs of EEG activity with and without baseline correction) showed
(1) that similarmodel coefficients explained the intensity of perception,
regardless of baseline correction and inclusion of pre-stimulusα-power
as dependent variable; and (2) that different model coefficients
explained the pre-stimulusα-power with and without baseline correc-
tion (Fig. 5). The first observation indicates that the variability of the de-
pendent variable is largely explained by variability in post-stimulus EEG
power when the relationship between explanatory and dependent var-
iable is similar with and without baseline correction. The second obser-
vation indicates that the variability of the dependent variable is largely
determined by variability in pre-stimulus EEG power when the rela-
tionship between explanatory and dependent variable is different
with and without baseline correction. Therefore, a statistical compari-
son between the model coefficients estimated before and after baseline
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correction can differentiate time–frequency EEG features that are dom-
inantly determined by the variability of either pre- or post-stimulus EEG
power. For example, the PLS estimation of the model coefficients
explaining the intensity of perception, which is largely determined by
the variability of post-stimulus EEG power, was not affected by the in-
clusion of pre-stimulus α-power as an additional dependent variable
(Fig. 5).

By exploiting the power of PLS analysis, we achieved a comprehen-
sive estimate of the relationship between laser-induced EEG responses
and perceived pain intensity. Subjective intensity of perception was
reflected in the increase of two TFD ROIs (‘LEP’: 100–400 ms, 1–20 Hz
and ‘γ-ERS’: 150–350 ms, 60–100 Hz) and in the decrease of one TFD
ROI (‘α-ERD’: 600–900 ms, 6–13 Hz) (Fig. 6). Also, we ascertained
that post-stimulus EEG power, and not pre-stimulus EEG power, signif-
icantly relates to the intensity of perception. This is important, as there
are several inconsistencies in previous report from different research
groups (Babiloni et al., 2006; Gross et al., 2007; Mouraux et al., 2003;
Schulz et al., 2011, 2012a; Zhang et al., 2012).

Conclusions

Here we show that performing a baseline correction of single-trial
TFDs of EEG power using the percentage approach introduces a bias in
the subsequent estimation of ERD/ERS. In contrast, the baseline subtrac-
tion approach is unbiased, and allowsminimizing thedominance of low-
frequency EEG power, thus making the magnitudes of ERD and ERS
comparable between low and high frequencies, and highlighting subtle
stimulus-elicited changes of oscillatory power. However, although unbi-
ased, the baseline subtraction approach unavoidably mixes the variance
of pre- and post-stimulus powers. A PLS regression analysis that in-
cludes both pre- and post-stimulus powers in an MVLR model, allows
reliable estimation of the respective contribution of pre- and post-
stimulus powers to the trial-to-trial relationships between ERD/ERS
and behavioral variables. Thus, the combination of single-trial baseline
subtraction approach and PLS regression allows a full exploration of
stimulus-induced electrocortical oscillations in awide range of neurosci-
entific applications.
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