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Abstract—A fundamental function of nociception is to trigger defensive motor responses to threatening events.
Here, we explored the effects of phasic pain on the motor excitability of ipsilateral and contralateral arms. We rea-
soned that the occurrence of a short-lasting nociceptive stimulus should result in a specific modulation of motor
excitability for muscles involved in the withdrawal of the stimulated limb. This was assessed using transcranial
magnetic stimulation (TMS) of the left and right primary motor cortex to elicit motor-evoked potentials (MEPs) in
three flexor and two extensor muscles of both arms. To assess the time-course of nociception-motor interactions,
the TMS pulses were triggered 50–2000 ms after delivering short-lasting nociceptive laser stimuli to the left or
right hand. We made three main observations. First, nociceptive stimuli induced an early-latency (100 ms)
enhancement of MEPs in flexor muscles of the stimulated hand. Considering its latency, this modulation is likely
consequent to nociceptive-motor interactions at spinal level. This early and lateralized enhancement was
followed by a later (150–400 ms) MEP reduction in extensor muscles of the stimulated hand and flexor muscles
of both hands, predominant at the stimulated hand. Finally, we observed a long-lasting (600–2000 ms) MEP
enhancement in muscles of the non-stimulated hand. These later effects of the nociceptive stimulus could reflect
nociception-motor interactions occurring at cortical level. � 2018 IBRO. Published by Elsevier Ltd. All rights reserved.
Key words: nociception, primary motor cortex, transcranial magnetic stimulation, pain, motor-evoked potentials.
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INTRODUCTION

Because of its intrinsic aversive nature, pain strongly

influences behavior. For example, following a lesion,

pain-related changes in motor behavior can protect from

further injury and promote recovery (Hodges and

Tucker, 2011; Burns et al., 2016). Most importantly, the

ability to generate swift motor responses to the detection

of a sudden noxious stimulus is crucial to prevent or limit

injury, and is thus essential for survival (Iannetti and

Mouraux, 2010).

Nociception-evoked motor responses imply the

existence of strong interactions between nociceptive

and motor systems (Bank et al., 2013). Such interactions

have been clearly demonstrated at spinal level. For exam-

ple, nociceptive stimulation of the foot elicits a spinal noci-

ceptive withdrawal reflex (NWR) resulting in a
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simultaneous activation of flexor muscles and inhibition

of extensor muscles of the stimulated limb (Sandrini

et al., 2005). Interestingly, this nociceptive response

could encompass several reflex modules, each having a

characteristic reflex-evoking receptive field, and control-

ling one or more synergistic muscles (Schouenborg and

Kalliomaki, 1990; Andersen et al., 1999). The elicited

muscular response would thereby be dependent on the

location of the nociceptive stimulus (Andersen, 2007).

Similarly, it was shown that high-intensity electrical stimu-

lation of the nociceptive afferents of a digital nerve can

transiently interrupt the voluntary muscle contraction of

the stimulated limb through spinal inhibitory circuits

(Merton, 1951; Caccia et al., 1973; Kranz et al., 1973;

McLellan, 1973; Uncini et al., 1991; Inghilleri et al.,

1997; Floeter, 2003; Kofler, 2003).

There is also evidence supporting the existence of

nociception-motor interactions at cortical level, but these

interactions have not been characterized as extensively.

For example, Frot et al. (2013) found, using depth elec-

trodes implanted in the pre- and post-central gyri of

epileptic patients, that brief nociceptive stimuli delivered

to the hand dorsum elicit early-latency responses in the

contralateral primary motor cortex (M1), peaking approxi-

mately 170 ms after stimulus onset.
hanges in Motor Excitability. Neuroscience (2018), https://doi.org/10.1016/j.neuroscience.2018.06.039
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A more direct approach to characterize modulatory

effects of nociception on the motor system at cortical

level is to assess the effect of nociceptive stimuli on the

motor-evoked potentials (MEPs) elicited by transcranial

magnetic stimulation (TMS) of M1 (Hallett, 2000;

Bestmann and Duque, 2015). Using this approach,

Valeriani et al. (1999, 2001) found, in studies performed

in five healthy volunteers, that noxious heat stimuli deliv-

ered to the hand dorsum exert an early (170–270 ms)

and transient inhibition of MEPs recorded from the first
dorsal interosseous muscle (FDI) (Valeriani et al., 1999)

and biceps brachialis (BB) (Valeriani et al., 2001) of the

stimulated limb. This inhibition was interpreted as result-

ing from a change in excitability at cortical level, because

MEPs evoked by anodal electrical stimulation of M1,

which is thought to directly activate the cortico-spinal

tract, were unaffected by the nociceptive stimulus.

Here, we aimed to characterize the temporal profile of

the modulatory effect of transient nociceptive stimulation

of the hand dorsum skin on the excitability of the motor

system controlling a number of muscles of the hand and

upper limb ipsilateral and contralateral to the stimulated

hand. We hypothesized that phasic pain delivered to the

hand dorsum facilitates a purposeful defensive reaction

in the stimulated limb, which would be reflected in a

limb-specific and time-dependent modulation of motor

excitability within the flexor muscles involved in the

withdrawal of the stimulated limb.

EXPERIMENTAL PROCEDURES

Participants and experimental design

Ten subjects took part in the experiment (5 men), aged

20–24 years (22 ± 1; mean ± standard deviation).

None of the participants had a history of neurological or

psychiatric disorder, and all were naive to the purpose

of the study. All participants gave written informed

consent and received a financial compensation for their

participation. The protocol was approved by the

institutional ethics committee of the Université

catholique de Louvain in accordance to the Declaration

of Helsinki.
Fig. 1. Experimental design. MEPs were recorded from intrinsic and extrins

quasi-concomitant stimulation of the left and right M1 (TMS inter-pulse inte

anatomically more anterior than ECR) muscles of the hand are schematicall

laser stimulus delivered either to the left or to the right hand. The time-interval

in blue) was 50, 100, 150, 200, 250, 300, 350, 400, 600, 1000 or 2000 ms.

reader is referred to the web version of this article.)
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The experimental design is detailed in Fig. 1. We

examined the effect of a nociceptive stimulus delivered

to the left or right hand dorsum on the MEPs elicited in

flexor (FDI, flexor carpi radialis; FCR) and extensor

(extensor carpi radialis; ECR) muscles of the left and

right hand.

The time course of the possible modulatory effects of

the laser stimulus on motor excitability was characterized

by varying the delay between the onset of the laser

stimulus and the onset of the TMS pulses delivered

over the left and right M1.

We also conducted a supplementary experiment in

which we aimed to assess the effects of nociceptive

stimulation on two proximal muscles of the upper limb

controlling the flexion (BB) and extension (triceps
brachialis, TB) of the forearm. The design of this

experiment was almost the same as that of the main

experiment (see below).
Nociceptive stimulation

Participants were seated in a comfortable chair in a dimly-

lit room with their arms placed on a cushion and their hand

palms resting on a table (Fig. 1). A small curtain occluded

vision of the hands and laser stimulus. Therefore,

participants were not aware of which hand was going to

be stimulated. High-intensity nociceptive stimuli were

50-ms pulses of radiant heat generated by an infrared

CO2 laser stimulator (wavelength 10.6 mm; Université

catholique de Louvain; Plaghki et al. (1994)). The target

of the laser stimulator was visualized by a coaxial He-

Ne laser beam, and controlled using two mirrors mounted

on a computer-controlled 2-axis galvanometer (LSST-

10.6-12-105-8062-3A, Sintec Optronics, Singapore). The

stimuli were delivered to the left or right hand dorsum, in

random order. Beam surface area at target site was 80

mm2. To avoid skin overheating and nociceptor fatigue

or sensitization, the target of the laser beam was dis-

placed to a random position on the hand dorsum after

each pulse. The minimum distance between two consec-

utive pulses on the same hand was set to 20 mm. In a

preliminary session, laser stimuli of variable energy were
ic muscles of both hands (flexors: FDI, FCR; extensor: ECR) using

rval: 1 ms). Intrinsic (FDI) and extrinsic (FCR, hatched in the figure,

y shown. TMS pulses were systematically preceded by a nociceptive

between the laser stimulus (shown in red) and the TMS pulse (shown

(For interpretation of the references to color in this figure legend, the

hanges in Motor Excitability. Neuroscience (2018), https://doi.org/10.1016/j.neuroscience.2018.06.039
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delivered to the hand dorsum such as to determine the

energy at which the stimuli elicited a clear painful pinprick

sensation, detected with reaction times compatible with

the conduction velocity of Ad-fibers (<650 ms; Mouraux

et al. (2003)). The same intensity was used on the two

hands and kept constant throughout the whole experi-

mental session.

Transcranial magnetic stimulation and MEP
recording

Participants were asked to relax their muscles. Motor

responses were obtained simultaneously from the left

and right hand, using two figure-of-eight coils (wing

internal diameter: 35 mm) positioned over the hand

representation of the right and left M1. We chose to

record MEPs simultaneously from three different

muscles to decrease the total number of TMS pulses

required to conduct the experiment, a factor known to

induce changes in motor cortex excitability (Pellicciari

et al., 2016); and the total number of laser stimuli, a factor

that can lead to nociceptor habituation or sensitization

(Bromm and Treede, 1987a,b; Raij et al., 2003). More-

over, it ensured that the responses from all three muscles

were recorded in the same state of vigilance and atten-

tiveness (Derosiere et al., 2015).

Monophasic TMS pulses (approx. 0.1 ms rise time

and 1 ms total duration) were generated using two

Magstim 200 magnetic stimulators (Magstim, Whitland;

UK). A 1-ms inter-pulse interval separated the onset of

the two pulses, and the order of the two pulses was

randomized across trials. The two pulses of TMS were

not simultaneous to reduce physical interactions

between the electrical fields induced by each of the two

coils (Cincotta et al., 2005). A 1-ms inter-pulse interval

was chosen as this interval is sufficiently short to avoid

inhibitory (Ferbert et al., 1992) or facilitatory (Hanajima

et al., 2001) interactions between the two hemispheres.

This double-coil TMS approach using a 1-ms inter-pulse

interval has been recently validated by Grandjean et al.

(2018), in a study showing that MEPs obtained using

the double-coil approach to stimulate the left and right

M1 are similar to those elicited by single-coil stimulation

of the left or right M1. It was also shown to be an effective

approach to study corticospinal excitability within the con-

text of a motor task (Vassiliadis et al., 2018).

After fitting the participant with an elastic fabric head

cap (Electro-cap International, USA), the coils were

positioned tangentially to the scalp, with the handle

pointing toward the back of the head 45� away from the

midline, approximately perpendicular to the central

sulcus.

Electromyographic (EMG) signals were recorded

using surface electrodes (Ambu, BlueSensor NF-50-

K/12/EU, Ballerup, Denmark) placed over the FDI, FCR

and ECR muscles of both hands. The signals were

amplified and bandpass filtered on-line (4–1500 Hz)

using a Neurolog signal conditioner (Digitimer;

Hertfordshire, UK), and digitized at 5000 Hz using a

CED 1401 (Cambridge Electronics Design; UK).

For each hemisphere, we first identified the optimal

coil location to obtain MEPs simultaneously in the
Please cite this article in press as: Algoet M et al. Temporal Profile and Limb-specificity of Phasic Pain-Evoked C
contralateral FDI, FCR and ECR muscles. This location

was marked on the cap to provide a reference point

throughout the experiment. We then determined the

minimum intensity required to elicit a measurable

MEP in the FCR muscle (peak to-peak MEP amplitudes

>50 mV) in 5 out of 10 trials. For both left and right

FCR muscles, the mean resting motor threshold (rMT)

amounted to 43 ± 4% and 43 ± 5% of maximum

stimulator output, respectively. The intensity of TMS

used for the experiment was then set to 120% of this

value.

Recording of MEPs following nociceptive stimulation

Each trial started by the delivery of a nociceptive laser

stimulus to a random position on the left or right hand

dorsum. The laser stimulus was always followed by a

TMS pulse delivered with a variable interval.

The time intervals between the onset of the laser

stimulus and the delivery of the TMS pulses (inter-

stimulus interval; ISI) were 50, 100, 150, 200, 250, 300,

350, 400, 600, 1000 or 2000 ms (Fig. 1). The trials were

presented in five blocks. Within each block, each trial

type was repeated two times, resulting in 44 trials per

block (2 � 11 time intervals � 2 laser stimulus

locations). The order of the trials was pseudo-

randomized across blocks. At the end of each trial

(3–4 s after the onset of the laser stimulus), a warning

tone prompted the participant to report the intensity of

the percept elicited by the laser stimulus using a

numerical rating scale (NRS) extending between 0 (no

sensation) to 10 (most intense sensation). The inter-trial

interval was 6–7 s.

Statistical analyses
Effect of the nociceptive laser stimulus on MEP
amplitudes. For each muscle, MEP amplitudes were

estimated by measuring the maximum peak-to-peak

amplitude of the TMS-evoked EMG response (Fig. 2).

MEP amplitudes were expressed as the percentage of

change relative to the average amplitude of the MEPs

obtained in both limbs at ISI = 50 ms, which served as

control (Fig. 3). The rationale for this approach is that

50 ms after the onset of the rise in skin temperature

generated by the laser stimulus, the afferent volley

generated by the activation of heat-sensitive nociceptors

has not yet reached the spinal cord (because of the

time required to reach the thermal activation threshold

of these nociceptors, the time required for neural

transduction, and the peripheral conduction time)

(Bromm and Treede, 1984). Therefore, at ISI = 50 ms,

the nociceptive afferent volley cannot interact with the

descending motor volley generating the MEPs.

If the laser stimulus has no time-dependent effect on

motor excitability, the average amplitude of the MEPs

elicited 100–2000 ms after the laser stimulus should

tend toward the average amplitude of the MEPs elicited

at ISI = 50 ms of the corresponding side. Therefore, for

each limb and for each muscle, MEP amplitudes

obtained at ISIs 100–2000 ms were compared using
hanges in Motor Excitability. Neuroscience (2018), https://doi.org/10.1016/j.neuroscience.2018.06.039
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paired sample t-tests to the MEP amplitudes obtained at

ISI = 50 ms to assess the time-intervals at which they

were either increased or decreased. The results of this

first-step analysis were then used to cluster ISIs in four

categories prior to comparing changes in motor

excitability at the stimulated and non-stimulated limbs.

Cluster 1 corresponded to the average MEP amplitude

at ISI = 50 ms, serving as control. As detailed in the

Results section, cluster 2 corresponded to an early-

latency increase of MEPs observed in FDI and FCR

muscles at ISI = 100 ms. Cluster 3 corresponded to a

later reduction of MEPs observed in all three muscles at

ISIs = 150–400 ms. Finally, cluster 4 corresponded to a

late and prolonged MEP facilitation observed in ECR

and FDI muscles at ISIs = 600–2000 ms. Using the

average amplitude of the MEPs obtained at the ISIs

belonging to each cluster, the differential effect of the

laser stimulus on motor excitability at the laser-

stimulated limb and at the contralateral non-laser-

stimulated limb was assessed separately for each

muscle (FDI, FCR, ECR), using a two-way repeated-

measures ANOVA with the factors ‘ISI cluster’ (four

levels: clusters 1–4) and ‘side’ of the limb onto which

the nociceptive stimulus was applied (two levels:

stimulated and non-stimulated limbs). In this analysis, a

main effect of ‘ISI cluster’ on MEP amplitudes would

indicate a global non-limb-specific effect of the

nociceptive stimulus on motor excitability, whereas the

presence of an interaction between the factors ‘ISI

cluster’ and ‘side’ would indicate a limb-specific effect of

the nociceptive stimulus on motor excitability.
Please cite this article in press as: Algoet M et al. Temporal Profile and Limb-specificity of Phasic Pain-Evoked Changes in Motor Excitability. Neuro
The Kolmogorov–Smirnov test

was used to assess the assumption

of normality. For some measures

(4/24), the assumption of normality

was violated according to this test.

Importantly, simulation studies have

shown that F-tests control well the

false-positive rate under conditions

of non-normality (Glass et al., 1972;

Harwell et al., 1992; Lix et al., 1996),

suggesting that F-tests remain robust

under conditions of non-normality,

especially when group sizes are equal

(Donaldson, 1968). A Greenhouse-

Geisser correction for violations of

sphericity was used when appropri-

ate. When justified, post hoc compar-

isons of the responses were

performed using paired sample

t-tests, as follows. For each cluster,

MEP amplitudes obtained at the

stimulated limb were compared to

the MEP amplitudes obtained at the

non-stimulated limb to assess the

time-intervals at which the laser stim-

ulus differentially affected excitability

in the two limbs. Reported p-values

were not corrected for multiple

comparisons (Rothman, 1990; Feise,

2002). Significance threshold was

set at p < 0.05.
Relationship with background EMG activity. Variations

in EMG background activity could have contributed, at

least in part, to differences in MEP amplitudes.

Therefore, the background EMG activity was estimated

by computing the root-mean-square (RMS) amplitude

from -100 ms to the onset of each TMS pulse. For each

muscle, the average RMS amplitudes obtained at the

different ISIs were compared using a two-way repeated-

measures ANOVA with the factors ‘ISI cluster’ (four

levels: clusters 1–4) and ‘side’.
Relationship with intensity of perception. We also

examined whether the effect of the nociceptive stimulus

on MEP amplitudes was dependent on the reported

intensity of perception. For this purpose, a median split

was used to separate the trials of each participant in

two categories of equal size (low vs. high intensity of

perception). For each muscle, the average MEP

amplitudes obtained across the different conditions were

then compared using a three-way repeated-measures

ANOVA with the factors ‘ISI cluster’ (four levels: clusters
1–4), ‘side’ and ‘perception’ (low vs. high intensity of

perception). In this analysis, a main effect of

‘perception’, or an interaction between the factors

‘perception’ and the factors ‘ISI cluster’ or ‘side’ would
indicate that nociceptive stimuli perceived as more or

less intense do not exert the same effect on motor

excitability.
science (2018), https://doi.org/10.1016/j.neuroscience.2018.06.039
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Fig. 3. Effect of the nociceptive laser stimulus delivered to the hand

dorsum on the magnitude of the MEPs elicited in flexor (FDI, FCR)

and extensor (ECR) muscles of the laser-stimulated hand (red) and

non-laser-stimulated hands (blue). X-axis: time-interval between the

onset of the nociceptive laser stimulus and the onset of the TMS

pulse. Y-axis: MEP amplitude, expressed as the percentage of

change relative to the MEPs obtained at ISI = 50 ms. The red and

blue dots show the time points at which the change in MEP

amplitudes was significantly different from MEPs recorded at ISI =

50 ms. (For interpretation of the references to color in this figure

legend, the reader is referred to the web version of this article.)
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Baseline MEPs recording. A baseline recording of

MEPs was performed at the beginning and at the end of

the experiment (20 TMS pulses delivered using a

constant 6–7 s inter-trial interval), to assess potential

inter-block cumulative effects of the repeated TMS

pulses (Pellicciari et al., 2016) and/or differences related

to hand dominance (Triggs et al., 1994). The average
Please cite this article in press as: Algoet M et al. Temporal Profile and Limb-specificity of Phasic Pain-Evoked C
amplitude of the MEPs obtained at the two baseline mea-

surements were compared using a two-way repeated-

measures ANOVA with the factors ‘time’ (beginning vs.

end of the experiment) and ‘dominance’ (MEPs recorded

from the dominant vs. non-dominant limb).
Supplemental experiment

In order to assess the effect of a nociceptive stimulus

delivered to the hand dorsum on more proximal muscles

controlling the flexion (BB) and extension (TB) of the

forearm, we conducted a supplemental experiment on

seven healthy participants (4 men), aged 22–24 years

(23 ± 1). Such as in the main experiment, the laser

stimuli were delivered to the left or right hand dorsum, in

random order. Because it was not possible to position

two coils over the more medial M1 representation of

proximal upper-limb muscles, only one hemisphere was

stimulated, using a single figure-of-eight coil (wing

internal diameter: 45 mm) over the right or left M1. EMG

signals were recorded using surface electrodes placed

over the BB and TB muscles of either the dominant

hand (3 participants) or the non-dominant hand

(4 participants). After having identified the optimal coil

location to obtain MEPs in both muscles, the minimum

intensity required to elicit measurable MEPs in the BB

muscles was determined (peak to-peak MEP amplitudes

>20 mV in 5 out of 10 trials). The mean rMT of the left

and right BB muscle amounted to 64 ± 7% and

68 ± 3% of maximum stimulator output, respectively.

The intensity of TMS used for the experiment was then

set to 120% of this value. On the basis of the results of

the main experiment, the time intervals between the

laser stimulus and the TMS pulse were 50, 100, 250,

300 or 1000 ms. Trials were presented in five blocks.

Within each block, each trial combination was repeated

four times, resulting in 40 trials per block (4 � 5 time inter

vals � 2 laser stimulus locations). Maximum peak-to-peak

MEP amplitudes were measured and expressed as the

percentage of change relative to the average amplitude

of the MEPs obtained at both limbs at ISI = 50 ms. For

each muscle, the average amplitude of the MEPs was

compared using a two-way repeated-measures ANOVA

with the factors ‘ISI’ (50, 100, 250, 300, and 1000 ms)

and ‘side’ of the limb onto which the nociceptive

stimulus was applied (stimulated vs. non-stimulated

hand).
RESULTS

Nociception-motor interactions in flexor and
extensor muscles of the hand
Effect of the nociceptive laser stimulus on MEP
amplitudes. Consistent MEPs were recorded from all

three muscles controlling flexion and extension of the

hands (Fig. 2). The nociceptive stimulus appeared to

induce a consistent sequence of changes in MEP

amplitude in all three muscles (Fig. 3). The paired-

sample comparison of the MEP amplitudes obtained at I

SI = 50 ms with the MEP amplitudes at ISIs 100–2000
hanges in Motor Excitability. Neuroscience (2018), https://doi.org/10.1016/j.neuroscience.2018.06.039
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Table 3. Post-hoc comparisons (paired-sample t-tests) of the MEPs

elicited in the FDI, FCR and ECR muscles of the laser-stimulated and

non-laser-stimulated hands, at ISI = 100 ms (cluster 2), ISI = 150–

400 ms (cluster 3) and ISI = 600–2000 ms (cluster 4). The degrees of

freedom are equal to nine for all paired-sample t-tests. *p < 0.05; **p

< 0.005

FDI FCR ECR

Cluster 2 .369 .049* .629

ISI = 100 ms

Cluster 3 <.001** .001** <.001**

ISI = 150–400 ms

Cluster 4 .012* .081 <.001*

ISI = 600–2000 ms
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ms in each muscle led us to group the different ISIs in four

separate clusters (Table 1). Cluster 1 consisted in the

MEPs obtained at ISI = 50 ms, serving as control.

Cluster 2 consisted in the MEPs obtained at ISI = 100

ms. At this early-latency ISI, an increase in amplitude

was observed in the FDI and FCR muscles. Cluster 3

consisted in the MEPs obtained at ISIs 150–400 ms. At

these ISIs, a reduction of amplitude was observed in all

three muscles. Finally, cluster 4 consisted in the MEPs

obtained at ISIs 600–2000 ms. At these ISIs, a late and

prolonged increase was observed in ECR and FDI

muscles of the non-laser-stimulated hand.

For each of the three muscles, the repeated-

measures ANOVA showed a significant interaction

between the factors ‘ISI cluster’ and ‘side’ (laser-

stimulated limb vs. non-laser-stimulated limb), indicating

that the nociceptive stimulus had a differential effect on

the magnitude of the MEPs recorded from muscles of

the laser-stimulated limb as compared to the non-laser-

stimulated limb (Table 2).

For cluster 2 (ISI = 100 ms), post hoc comparisons of

the MEPs obtained at the laser-stimulated and non-laser-

stimulated limbs showed that the early-latency

enhancement of MEPs was significantly greater in the

FCR muscle of the laser-stimulated hand as compared

to the non-laser-stimulated hand (Table 3 and Fig. 4).

For cluster 3 (ISIs 150–400 ms), the mid-latency

reduction of MEPs was significantly stronger in all three

muscles of the laser-stimulated limb as compared to the

non-laser stimulated limb. Finally, for cluster 4 (ISIs

600–2000 ms), the amplitudes of the MEPs obtained

from the FDI and ECR muscles of the non-laser-

stimulated limb were significantly greater as compared

to the same muscles of the laser-stimulated limb.
Table 1. Nociception-motor interactions in flexor and

the effects of the nociceptive stimulus on the MEPs eli

laser-stimulated and non-laser-stimulated hands. For

100–2000 ms were compared to the MEP amplitudes

t-tests. Significant increases and decreases in ME

respectively. The degrees of freedom are equal to
**p < 0.005

ISI (ms) 100 150 200 250 300
Laser-s�mulated hand
FDI .006* .004** .002** .198 .159
FCR .023* .028* .007* .026* .056
ECR .05 .083 .052 .151 .072
Non-laser-s�mulated hand
FDI .354 .037* .169 .675 .777
FCR .596 .128 .077 .304 .182
ECR .344 .196 .86 .313 .498

Table 2. Two-way repeated-measures ANOVA comparing, for each flexor/exte

pulses delivered 50 ms (ISI cluster 1), 100 ms (ISI cluster 2), 150–400 ms (

nociceptive stimulus (factor ‘ISI cluster’), and recorded from muscles of the las
**p < 0.005

Factors FDI FCR

ISI cluster F3,27 = 6.84 p = .001** g2 = .432 F1.5,13.5 = 7.61

Side F1,9 = 10.92 p = .009* g2 = .548 F1,9 = 7.7

ISI � side F3,27 = 9.5 P < .001** g2 = .513 F1.27,11.4 = 5.1

Please cite this article in press as: Algoet M et al. Temporal Profile and Limb-specificity of Phasic Pain-Evoked C
Background EMG activity. In all muscles, the two-way

repeated-measures ANOVA conducted on the measures

of background EMG activity showed no main effect of

‘side’ (FDI: F(1,9) = 0.33, p= 0.578, g2 = 0.036; FCR:

F(1,9) = 0.36, p= 0.566, g2 = 0.038; ECR: F(1,9) = 0.14,

p= 0.718, g2 = 0.015), no main effect of ‘ISI cluster’
(FDI: F(3,27) = 2.38, p= 0.092, g2 = 0.209; FCR:

F(1.4,12.1) = 3.81, p= 0.065, g2 = 0.297; ECR:

F(1.4,12.5) = 0.51, p= 0.546, g2 = 0.054), and no

interaction between the two factors (FDI: F(3,27) = 0.28,

p= 0.841, g2 = 0.03; FCR: F(1.3,12) = 1.87, p = 0.199,

g2 = 0.172; ECR: F(3,27) = 0.28, p = 0.841, g2 = 0.03).
Intensity of pain perception. The three-way repeated-

measures ANOVA assessing whether the effect of the

nociceptive stimulus on motor excitability was

dependent on the intensity of the elicited percept

showed no significant main effect of ‘perception’ (FDI:

F(1,9) = 2.98, p= 0.118, g2 = 0.249; FCR: F(1,9) =

0.71, p = 0.422, g2 = 0.073; ECR: F(1,9) = 4.56,
extensor muscles of the hand. Time course of

cited in the FDI, FCR and ECR muscles of the

each limb, MEP amplitudes obtained at ISIs

obtained at ISI = 50 ms using paired-sample

P amplitudes are shown in red and blue,

nine for all paired-sample t-tests. *p< 0.05;

350 400 600 1000 2000

.258 .054 .884 .135 .042*

.093 .013* .921 .1 .128

.212 .019* .339 .453 .06

.399 .319 .068 .012* .023*

.889 .663 .271 .056 .128

.107 .173 .017* .004** <.001**

nsor muscle of the hand (FDI, FCR, ECR), the MEPs elicited by TMS

ISI cluster 3) and 600–2000 ms (ISI cluster 4) after the onset of the

er-stimulated and non-laser-stimulated hands (factor ‘side’). *p< 0.05;

ECR

p = .009* g2 = .458 F3,27 = 5.81 p = .003** g2 = .392

p = .022* g2 = .461 F1,9 = 26.32 p = .001** g2 = .745

p = .039* g2 = .36 F1.4,12.8 = 9.9 p = .005* g2 = .523
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Fig. 4. Subject-and group-level average ± SD of the MEPs

expressed as the percentage of change in MEP amplitude in the

FDI, FCR and ECR muscles of the laser-stimulated and non-laser-

stimulated limb at ISI = 100 ms (cluster 2), ISI = 150–400 ms

(cluster 3) and ISI = 600–2000 ms (cluster 4), relative to the MEPs

obtained at ISI = 50 ms (cluster 1). The asterisks indicate the

clusters at which the magnitude of the MEPs obtained at the laser-

stimulated and non-laser-stimulated limbs were significantly different

from one another (paired-sample t-tests).
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p= 0.062, g2 = 0.336) and no significant ‘perception’ x

‘side’ interaction (FDI: F(1,9) = 1.59, p = 0.239, g2 =
0.15; FCR: F(1,9) = 0.56, p= 0.474, g2 = 0.058; ECR:

F(1,9) = 0.81, p= 0.391, g2 = 0.083) or ‘perception’ x

‘ISI cluster’ interaction (FDI: F(1.9,17.2) = 0.81, p =

0.458, g2 = 0.082; FCR: F(3,27) = 0.41, p = 0.745,

g2 = 0.044; ECR: F(1.5,13.8) = 1.29, p= 0.297, g2 =
0.125). There was also no three-way interaction (FDI:

F(3,27) = 0.18, p= 0.908, g2 = 0.02; FCR: F(3,27) = 1.8,

p= 0.172, g2 = 0.166; ECR: F(3,27) = 1.78, p= 0.174,

g2 = 0.165).
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Baseline MEPs. Consistent MEPs were recorded from

the FDI, FCR and ECR muscles of both hands, both

before the TMS-laser session (FDI: 3.4 ± 2.0 mV, FCR:

0.3 ± 0.2 mV, ECR: 0.8 ± 0.4 mV) and after the TMS-

laser session (FDI: 2.9 ± 2.2 mV, FCR: 0.3 ± 0.2 mV,

ECR: 0.9 ± 1.0 mV). In all three muscles, the two-way

repeated-measures ANOVA showed no significant main

effects of ‘time’ (FDI: F(1,9) = 1.82, p= 0.21, g2 =
0.168; FCR: F(1,9) = 0.61, p= 0.457, g2 = 0.063; ECR:

F(1,9) = 0.37, p= 0.558, g2 = 0.04), and ‘dominance’
(FDI: F(1,9) = 0.96, p = 0.354, g2 = 0.096; FCR:

F(1,9) = 0.57, p = 0.470, g2 = 0.06; ECR: F(1,9) = 1.63,

p= 0.234, g2 = 0.153), as well as no interaction

between the two factors (FDI: F(1,9) = 1.40, p = 0.266,

g2 = 0.135; FCR: F(1,9) = 1.29, p = 0.286, g2 = 0.125;

ECR: F(1,9) = 0.02, p= 0.88, g2 = 0.003).
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Nociception-motor interactions in flexor and extensor
muscles of the forearm (supplemental experiment). Con-

sistent MEPs were recorded from the BB and TB muscles

of the two forearms. However, interpretation of potential

nociception-motor interactions in these muscles was

limited by the fact that the magnitude of MEPs recorded

in these muscles was markedly lower than the

magnitude of MEPs obtained from hand muscles in the

main experiment (Fig. 5). Subject-and group-level

averages of the change in MEP amplitude relative to

baseline are shown in Fig. 5. The repeated-measures

ANOVA with the factors ‘ISI’ (50, 100, 250, 300, and

1000 ms) and ‘side’ (stimulated vs. non-stimulated hand)

showed no significant main effects of ‘ISI’ (BB: F(4,24) =

1.27, p = 0.311, g2 = 0.174; TB: F(12,11.7) = 0.71, p=

0.509, g2 = 0.106), ‘side’ (BB: F(1,6) = 0.63, p = 0.457,

g2 = 0.095; TB: F(1,6) = 5.14, p= 0.064, g2 = 0.462)

and no significant two-way ‘side’ x ‘ISI’ interaction (BB:

F(4,24) = 1.89, p= 0.145, g2 = 0.24; TB: F(4,24) = 1.59,

p= 0.21, g2 = 0.209). No significant modulatory effect

of the nociceptive stimulus was thus observed in either

muscles (Fig. 6). In all muscles, there was also no

significant change of the background EMG activity. The

two-way repeated-measures ANOVA showed no main

effect of ‘side’ (BB: F(1,6) = 0.01, p = 0.91, g2 = 0.002;

TB: F(1,6) = 2.68, p= 0.153, g2 = 0.309), no main

effect of ‘ISI’ (BB: F(1.92,11.49) = 0.91, p = 0.425,

g2 = 0.132; TB: F(4,24) = 2.21, p= 0.099, g2 = 0.269),

and no interaction between the two factors (BB:
hanges in Motor Excitability. Neuroscience (2018), https://doi.org/10.1016/j.neuroscience.2018.06.039
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Fig. 5. Left panel. Group-level average rectified EMG time courses of the MEPs recorded at ISI = 50 ms from forearm flexor (BB) and extensor

(TB) muscles in the supplemental experiment. Middle panel. Subject-and group-level average ± SD peak-to-peak amplitude of the MEPs recorded

from the different muscles. Note that consistent MEPs were recorded from all muscles, but that their magnitudes were, on average, of much smaller

magnitude than the MEPs recorded from distal muscles in the main experiment. Right panel. Subject-and group-level average ± SD of the MEPs

obtained at ISI = 100–1000 ms, expressed as the percentage of change relative to the MEPs obtained at ISI = 50 ms. The x-axis represents the

time-interval between the onset of the laser stimulus and the onset of the TMS pulse.
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F(1.4,8.37) = 1.43, p = 0.279, g2 = 0.193; TB: F(1.25,7.5) =

1.17, p = 0.33, g2 = 0.163).

DISCUSSION

In this study, we characterized the temporal profile of the

effects of a transient nociceptive stimulus delivered to the

hand dorsum on the motor excitability of extensor and

flexor muscles of the stimulated and non-stimulated

arm. We hypothesized that the occurrence of phasic

pain delivered to one hand would modulate motor

excitability in a limb-specific (stimulated vs. non-

stimulated limb) and possibly muscle-specific (flexor

muscles involved in the withdrawal of the stimulated

limb vs. other muscles) manner, with a time-specific

profile.

Our results can be summarized as follows. First, 100

ms after the onset of the nociceptive stimulus, the

responses in flexor muscles of the stimulated hand (FDI

and FCR) were significantly increased. This

enhancement was observed at both hands, but was

significantly more pronounced at the hand which

received the nociceptive stimulus, at least for the FCR

muscle. A trend toward an MEP enhancement at ISI =

100 ms was also observed in the extensor muscle of the

stimulated hand (ECR). Previous studies have

suggested that, at ISI = 100 ms, the nociceptive

afferent volley has not yet reached its cortical projection
Please cite this article in press as: Algoet M et al. Temporal Profile and Limb-specificity of Phasic Pain-Evoked C
sites (Xu et al., 1995; Spiegel et al., 1996; Valentini

et al., 2012a,b). Therefore, it is likely that the enhance-

ment observed at ISI = 100-ms results from

nociceptive-motor interactions occurring at spinal level.

Second, this initial enhancement was followed by a reduc-

tion of MEP amplitudes extending between 150 and 400

ms after the presentation of the nociceptive stimulus. This

reduction was significantly more pronounced at the stim-

ulated hand, and observed in both flexor and extensor

hand muscles. Third, between 600 and 1000 ms we

observed a sustained enhancement of the MEPs obtained

from the non-laser-stimulated limb as compared to the

laser-stimulated limb. Importantly, these changes in

MEPs amplitude were not the consequence of changes

in background EMG activity, which remained similar at

all ISI clusters, and at both limbs.
Early-latency increase of motor excitability at the
stimulated hand

At an ISI of 50 ms between the onset of the laser stimulus

and the onset of the TMS pulse, the nociceptive afferent

volley does not have enough time to reach spinal

projection sites and exert an effect on the motor volley

generated by the TMS pulse. Indeed, considering the

time required for the laser stimulus to bring skin

temperature above the thermal activation threshold of

heat-sensitive nociceptors and the time required for the
hanges in Motor Excitability. Neuroscience (2018), https://doi.org/10.1016/j.neuroscience.2018.06.039
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Fig. 6. Group-level average amplitude of the MEPs elicited in BB and

TB muscles of the laser-stimulated and non-laser stimulated hands in

the supplemental experiment. X-axis: time-interval between the onset

of the laser stimulus and the onset of the TMS pulse. Y-axis: MEP

amplitude, expressed as the percentage of change relative to the

MEPs obtained at ISI = 50 ms. No significant changes were

observed.
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transduction of the stimulus into a neural impulse (Bromm

and Treede, 1984), the delay between the onset of the

laser stimulus and receptor activation should be at least

40 ms. To this delay, one must then add the peripheral

conduction time of the nociceptive afferent volley (Kakigi

et al., 1991; Tran et al., 2001). Bromm and Treede

(1987a,b) estimated the mean conduction velocity of Ad
fibers activated by brief pulses of radiant heat to be

approximatively 14 m/s. The peripheral conduction dis-

tance separating the hand dorsum from the cervical spinal

cord is in the range of 90 cm. Thus, approximately 60 ms

is required for the nociceptive afferent volley to reach the

spinal cord. Therefore, considering (1) the time required

for receptor activation and (2) the peripheral conduction

distance, the afferent volley elicited by the laser pulse

can be expected to reach the spinal cord approximately

100 ms after stimulation onset (Tarkka et al., 1992). This

latency must then be compared to the central motor con-

duction time (CMCT), i.e. the time required for the

descending motor volley generated by the TMS pulse to

reach spinal motoneurons. In healthy subjects, normal

values of CMCT are in the range of 4–8 ms (Rossini

et al., 1987; Claus et al., 1988; Homberg et al., 1991).

Similarly, descending indirect volleys (I-waves) have been

recorded in humans with cervical epidural electrodes with
Please cite this article in press as: Algoet M et al. Temporal Profile and Limb-specificity of Phasic Pain-Evoked C
latencies of up to ± 10 ms after delivering TMS over M1

(Di Lazzaro et al., 1998, 2004). Moreover, excitatory post-

synaptic potentials generated in spinal motoneurons can

last as long as 10–20 ms (Curtis and Eccles, 1959;

Landgren et al., 1962; Rall et al., 1967). Taking this into

account, when the time-interval between the onset of

the laser stimulus and the onset of the TMS pulse was

50 ms, the descending motor volley has already been fully

transmitted to peripheral efferents at the time the nocicep-

tive input reaches the spinal cord.

In contrast, when the laser stimulus was delivered

100 ms before the TMS pulse, the nociceptive input

conveyed by myelinated Ad fibers has enough time to

interact with the descending motor volley at spinal level,

but it does not have enough time to interact at cortical

level. Indeed, studies have shown that the first cortical

response to laser stimuli delivered to the hand dorsum

occurs approximately 140–180 ms after onset (Xu et al.,

1995; Spiegel et al., 1996; Valentini et al., 2012a,b;

Lenoir et al., 2017). Moreover, depth recordings per-

formed in epileptic patients have shown that laser stimuli

delivered to the hand dorsum can elicit responses in M1

starting approximately 120 ms after stimulation onset,

and peaking 170 ms after stimulation onset (Frot et al.,

2013). For these reasons, the early-latency enhancement

of motor excitability observed at ISI = 100 ms was most

probably related to a segmental effect of Ad fiber nocicep-

tive input on the excitability of spinal motoneurons.

Although less investigated than in the lower limb, upper

limb nociceptive reflex activities can be recorded following

noxious electrical stimulation of the ulnar nerve as well as

the fingers (Cambier et al., 1974; Bromm and Treede,

1980; Campbell et al., 1991; Bouhassira et al., 1993;

Floeter et al., 1998; Serrao et al., 2006, 2012; Eckert

and Riley, 2013). Such as for the lower limbs, this reflex

activity could constitute a protective withdrawal response

(Serrao et al., 2006; Peterson et al., 2014). Whether a

parallel can be drawn between our observation and the

NWR remains an open question. The early latency of

our effect (100 ms) is compatible with the fact that the

NWR can be observed 60–120 ms after noxious electrical

stimulation of the ulnar nerve (Cambier et al., 1974). The

relatively early onset of this reflex activity can be

explained by the overlap of RII and RIII components,

respectively conveyed by non-nociceptive and nocicep-

tive inputs (Floeter et al., 1998). Notably, our results sug-

gest that the laser stimulus affects similarly the MEP

amplitudes recorded from flexor and extensor hand mus-

cles (Figs. 3 and 4), whereas it could have been expected

that noxious stimulation would induce a differential modu-

lation of motor excitability in muscles involved vs. not

involved in limb withdrawal, i.e. flexor vs. extensor mus-

cles. Supporting our results, several studies have

observed simultaneous reflex activity in flexor and exten-

sor muscles, both at the upper and lower limbs (Grimby,

1963; Floeter et al., 1998; Peterson et al., 2014), the acti-

vation pattern depending on the location of the nocicep-

tive stimulus and the position of the limbs (Andersen

et al., 1999; Andersen, 2007). Considering the biome-

chanical function of the muscles investigated in the pre-

sent study, it can be argued that the limb posture (hand
hanges in Motor Excitability. Neuroscience (2018), https://doi.org/10.1016/j.neuroscience.2018.06.039
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palms resting on a table) and the location of the nocicep-

tive stimulus (hand dorsum) would prevent us from

observing a withdrawal response in intrinsic (FDI) and

extrinsic (FCR) flexor muscles of the hand. Nevertheless,

a NWR in the FCR muscle has been described at rest in a

semi-flexed position similar to that used in our study

(Serrao et al., 2006) and has been recorded from the

FDI muscle after delivering noxious electrical stimuli to

different fingers (index, middle and fifth finger) (Floeter

et al., 1998). Also, the ‘‘cutaneous silent period” (CSP),

which is thought to be an inhibitory component of a defen-

sive reflex (Inghilleri et al., 1997), can be evoked in the

FDI muscle after noxious electrical stimulation of both

the index (Floeter et al., 1998) and the hand dorsum

(Romaniello et al., 2004; Kahya et al., 2010). Moreover,

while the influence of limb position is well established

for the lower limb (Andersen, 2007), few studies have

investigated this for the upper-limb withdrawal reflex and

have found inconsistent results (Eckert and Riley, 2013;

Peterson et al., 2014).

Mid-latency decrease of motor excitability at the
stimulated hand

Following the transient early-latency enhancement of the

responses recorded in flexor hand muscles, there was a

longer-lasting decrease of MEP amplitudes extending

between 150 and 400 ms after the onset of the

nociceptive stimulus. This decrease was significantly

more pronounced at the hand which received the

nociceptive stimulus. It was present in flexor and

extensor hand muscles. This observation is in

agreement with reports of a decreased motor excitability

in hand muscles after noxious electrical stimulation

(Inghilleri et al., 1995; Kofler et al., 1998, 2001, 2008;

Tamburin et al., 2001; Urban et al., 2004) or during phasic

painful heat stimulation (Dube and Mercier, 2011). Simi-

larly, Valeriani et al. (1999) found a significant reduction

of MEP amplitudes in the FDI muscle 170–270 ms after

the delivery of a thermal nociceptive stimulus on the stim-

ulated hand dorsum.

At these latencies, the nociceptive input conveyed by

Ad fibers has enough time to reach the M1 cortex before

the onset of the TMS pulse (Frot et al., 2013). Therefore,

this effect could be related to nociception-motor interac-

tions occurring at cortical level (exerting an effect on the

excitability of M1) and/or spinal level. Several studies

have shown that nociceptive laser stimuli can induce a

significant reduction of the sensorimotor mu rhythm, max-

imal over the hemisphere contralateral to the stimulated

hand (Raij et al., 2004; Ploner et al., 2006). Considering

that these stimulus-evoked changes in mu rhythm magni-

tude have been shown to index context-dependent

changes in the level of activation of sensorimotor cortices

(Valentini et al., 2012a,b), and considering the latency of

the effect of nociceptive stimulation on mu rhythm magni-

tude (180–570 ms; Raij et al., 2004), the decrease of MEP

amplitudes we observed at 150–400 ms could be related

to stimulus-evoked changes in cortical sensorimotor oscil-

latory activity. Mechanisms underlying theses changes in

cortical activity are still poorly understood. Nociceptive

inputs could act through spinothalamic projections to
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brain region involved in motor function such as M1 (Frot

et al., 2013) or cingulate areas (Dum et al., 2009) involved

in motor control of the upper limb (Turken and Swick,

1999) including defensive movements (Cooke and

Graziano, 2003, 2004; Moayedi et al., 2015). Further-

more, interactions between brain regions underlying the

processing of nociceptive inputs and those supporting

motor control could also be involved (Suppa et al.,

2013). In agreement, hemodynamic changes following

acute pain have been observed in several motor struc-

tures including the cerebellum, the supplementary motor

area, and the lenticular and caudate nuclei (Peyron

et al., 2000). In parallel, the decrease in MEP amplitudes

that we observed could be related to changes in top-down

influences on the spinal sensorimotor system (Eccles and

Lundberg, 1959; Schomburg, 1990). Indeed, several cor-

tical (Lundberg and Voorhoeve, 1962) and brainstem

(Engberg et al., 1968a,b; Carstens and Campell, 1992)

structures can modulate the strength of synaptic trans-

mission within spinal reflex circuits including those under-

lying the NWR.

Importantly, such sensori-motor interactions (i.e. the

reduction of MEPs in flexor and extensor muscles of the

stimulated hand) are probably not specific for

nociception. Non-nociceptive electrical stimulation of

both the median nerve and the digits provokes, 20–50

ms after stimulation, a suppression of MEPs recorded

from proximal and distal upper limb muscles (Clouston

et al., 1995; Manganotti et al., 1997; Bertolasi et al.,

1998; Classen et al., 2000; Helmich et al., 2005;

Tamburin et al., 2005; Bikmullina et al., 2009a,b;

Fischer and Orth, 2011). This afferent inhibition is thought

mainly result from cortical inhibitory mechanisms in the

sensorimotor cortex (Tokimura et al., 2000; Bikmullina

et al., 2009a,b; Ferreri et al., 2012; Tsang et al., 2014;

Kojima et al., 2015; Bailey et al., 2016; Noda et al.,

2016) conveyed by cholinergic (Di Lazzaro et al., 2000,

2002) and GABAAergic pathways (Di Lazzaro et al.,

2005, 2007). This short-latency inhibition is followed by

a later inhibitory period (200–1000 ms) which could result

from mechanisms involving basal ganglia, thalamo-

cortical (Sailer et al., 2003) and cortico-cortical interac-

tions (Chen et al., 1999; Abbruzzese et al., 2001; Sailer

et al., 2002). Whether the decrease in motor excitability

we observed in the current study 150–400 ms after noci-

ceptive stimulation can be explained by similar mecha-

nisms remains an open question that cannot be

answered with our experimental protocol.

Late-latency enhancement of motor excitability in the
contralateral hand

Nociceptive stimuli delivered to the hand also induced a

late-latency and long-lasting enhancement of the

magnitude of the MEPs recorded from the non-laser-

stimulated hand, extending 600 ms onward after

stimulus onset, at least for the FDI and ECR muscles.

Again, one can only speculate on the nature of this

late effect, which could result from interhemispheric

interactions (Terada et al., 2012) and/or crossed interac-

tions occurring at spinal level (Sherrington, 1910;

Andersen et al., 2003; Emborg et al., 2009). It has also
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to be noted that such an enhancement might not be lim-

ited to the non-stimulated limb as it was also observed

in the FDI muscle of the stimulated hand. Furthermore,

considering the late latency of this effect, it could reflect

changes induced by nociceptive input conveyed by

slow-conducting unmyelinated C fibers.

Using a similar experimental design, Chen et al.

(1999) characterized the temporal profile of the changes

in motor excitability induced by non-nociceptive electrical

stimulation of the median nerve at the level of the wrist.

Such as in the present study, they observed an early-

latency enhancement of MEPs recorded from hand mus-

cles of the stimulated hand, followed by a later attenuation

of MEPs closely resembling the attenuation observed in

the present study. The latency at which electrical stimula-

tion of the median nerve exerted effects on motor

excitability was shorter than the latency of the effects

induced by laser stimulation. As discussed previously, this

is easily explained by the time required for skin heating,

heat transduction and nerve conduction of heat-evoked

responses conveyed by thinly-myelinated Ad fibers as

compared to the responses elicited by direct electrical

activation of large-diameter Ab fibers.

However, contrasting with our results, non-nociceptive

electrical stimulation did not appear to induce a late

asymmetry of the MEPs elicited within hand muscles of

the stimulated and non-stimulated limb (Chen et al.,

1999), suggesting that the late asymmetric effect of the

laser stimulus on motor excitability observed in the pre-

sent study reflects sensori-motor interactions that are

specific for nociception. This interpretation is consistent

with the observations of Pereon and Guiheneuc (1995).

In their experiment, MEPs were recorded from the right

abductor digiti minimi muscle 200–700 ms after electrical

stimulation of the left median nerve. Especially for high-

stimulation intensities, i.e. when the electrical stimulus

was likely to activate small-diameter nociceptive affer-

ents, they observed a late-latency enhancement of MEPs

similar to the enhancement observed in the present study.

Spinal vs. cortical nociception-motor interactions

In the present study, we did not test directly the excitability

of spinal motoneurons. Therefore, we cannot determine

with certainty whether the late effects of the nociceptive

stimulus on motor excitability are due to interactions

occurring at the level of the spinal cord, or interactions

occurring at the level of the cortex. Valeriani et al.

(1999, 2001) attempted to do so by comparing the effects

of laser stimulation on the EMG responses elicited by

TMS and anodal electrical stimulation of M1, assuming

that anodal stimulation generates responses exclusively

related to a direct activation of the cortico-spinal tract.

However, several studies have suggested that this

assumption might not always be true (Di Lazzaro et al.,

1998). Other techniques to test spinal excitability suffer

from other limitations. H-waves recorded by electrical

stimulation of a nerve trunk, in addition to being influenced

by presynaptic, reciprocal and non-reciprocal inhibition

(Knikou, 2008), are difficult to evoke at rest (Mazzocchio

et al., 1995) and can be insensitive to changes, depend-

ing on the test reflex size (Crone et al., 1990). F-waves
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test only a fraction of the motoneurons pool (Espiritu

et al., 2003). The recording of MEPs elicited by transcuta-

neous electrical stimulation of the cortico-spinal tract at

cervico-medullary level could be an interesting mean

(Taylor, 2006). However, cervico-medullary MEPs are dif-

ficult to obtain in relaxed subjects (Matsumoto et al.,

2008). We attempted to record these responses in pilot

experiments, but failed to obtain consistent responses

compatible with the objective of assessing how they are

modulated by a preceding laser stimulus. Further experi-

ments relying on other techniques to disentangle changes

in spinal and supraspinal motor excitability are thus

needed.

Phasic vs. tonic pain

A number of studies investigated changes in motor

excitability induced by tonic cutaneous pain (Romaniello

et al., 2000; Farina et al., 2001; Fierro et al., 2010;

Martel et al., 2017) or muscle pain (Romaniello et al.,

2000; Le Pera et al., 2001; Svensson et al., 2003;

Martin et al., 2008; Schabrun and Hodges, 2012;

Schabrun et al., 2013; Burns et al., 2016). Changes in

motor excitability induced by tonic pain and phasic pain

could have different functions and reflect different mecha-

nisms. For example, changes induced by phasic pain

might be expected to prompt swift protective withdrawal

responses, whereas changes induced by tonic pain may

induce changes in motor behavior promoting healing

and recovery (Farina et al., 2003).

Farina et al. (2001) showed that MEPs recorded from

several muscles of the upper limb are reduced up to 20–

30 min after the topical application of capsaicin on the skin

overlying the FDI and FCR muscles. This inhibitory effect

was interpreted as originating from a modulation at corti-

cal level, because measures of peripheral and spinal

excitability (F-, H- and M-waves) remained unchanged

throughout the experiment. Using paired-pulse measures

of MEPs, Fierro et al. (2010) brought additional evidence

of changes in cortical motor excitability induced by tonic

cutaneous pain. A similar decrease in MEPs was

observed after inducing tonic muscle pain (Le Pera

et al., 2001; Svensson et al., 2003; Martin et al., 2008).

The suppression was explained by a reduction of

excitability of both cortical and spinal motoneurons. Tonic

muscle pain reduced not only the amplitude of MEPs eli-

cited by M1 stimulation, but also the amplitude of the H-

reflex (Le Pera et al., 2001), as well as the MEPs elicited

by direct stimulation of descending motor tracts at the

level of the foramen magnum (Svensson et al., 2003),

indicating a reduction of spinal motoneuron excitability.

Conversely, Martin et al. (2008) observed a facilitation

of the MEPs elicited by direct stimulation of the corti-

cospinal tract using cervico-medullary electrical stimula-

tion without any concomitant increase of the MEPs

elicited by cortical M1 stimulation, suggesting a facilitation

of spinal motoneurons and a concomitant inhibition of cor-

tical motoneurons. Inhibition at cortical level related to

phasic and tonic pain might constitute a mean to induce

‘‘motor decerebration” allowing the spinal motor system

to generate stronger protective reflex movements

(Farina et al., 2003).
hanges in Motor Excitability. Neuroscience (2018), https://doi.org/10.1016/j.neuroscience.2018.06.039

https://doi.org/10.1016/j.neuroscience.2018.06.039


887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

929

930

931

932

933

934

935

936

937

938

939

940

941

942

943

944

945

12 M. Algoet et al. / Neuroscience xxx (2018) xxx–xxx

NSC 18528 No. of Pages 16

5 July 2018
Study limitations

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

987

988

989

990

991

992

993

994

995

996
Lack of changes in forearm flexion and extensor
muscles. In the supplemental experiment, we attempted

to assess the effect of a laser stimulus on more

proximal muscles controlling the flexion (BB) and

extension (TB) of the forearm. In contrast with the clear

modulation of the MEPs recorded from flexor and

extensor muscles of the hand, we did not observe any

significant effect of the nociceptive stimulus on the

MEPs recorded from flexor and extensor muscles of the

forearm. This lack of effect contrasts with the results of

Valeriani et al. (2001), showing a significant decrease of

MEPs in the BB muscle 170–220 ms after the onset of

the laser stimulus. However, both results should be inter-

preted with caution, as the MEPs recorded from forearm

muscles were of low amplitude (Fig. 5). This is related

to the fact that activation of the motor representation of

these muscles is more difficult than activation of the large

motor representation of hand muscles (Wassermann

et al., 1992; Metman et al., 1993). The non-linear stimu-

lus–response curve characterizing the relationship

between TMS intensity and MEP amplitudes suggests

that changes in these motor responses are dependent

on the baseline amplitude of MEPs (Devanne et al.,

1997). Therefore, further experiments investigating, for

example, changes in the stimulus–response curve using

a range of TMS stimulation intensities could be more

appropriate to assess nociception-evoked changes in

the motor excitability of proximal upper limb muscles.

Large-amplitude MEP amplitudes recorded from the
FDI muscles. Because the intensity of TMS was set such

as to obtain reliable MEPs in FDI, FCR and ECR muscles,

the MEPs obtained from the FDI muscle had a large

average amplitude, suggesting that for this muscle, the

stimulation was probably in the upper part of the

sigmoidal input–output curve (Devanne et al., 1997).

Importantly, this did not prevent us from observing a

time-dependent change in amplitude of the MEPs

recorded from the FDI muscle, including a significant

increase at ISI = 100 ms.

Effect of experimental context. Our experimental

design required participants to rest both volar forearms

against a table, and to refrain from moving the

stimulated hand, in order to allow the recording of

reliable MEPs. Future studies should examine whether

limb position, location of the nociceptive stimulus, and

the instruction to avoid stimulus-evoked movements

(Bestmann and Duque, 2016; Duque et al., 2017) could

have contributed to the results of the present study as well

as the results of previous studies (Valeriani et al., 1999,

2001; Farina et al., 2001). Furthermore, at the end of each

trial, participants were asked to verbally report the inten-

sity of the percept elicited by the laser stimulus. Perform-

ing this task required to evaluate the stimulus, maintain

information in working memory, and await a warning tone.

Whether these could have influenced our results should

thus be considered. An enhancement of MEPs recorded

from the tongue has been described before the onset of
Please cite this article in press as: Algoet M et al. Temporal Profile and Limb-specificity of Phasic Pain-Evoked C
speech. However, this was observed only shortly before

speech onset (260 ms) (Neef et al., 2015) and, in the pre-

sent study, the minimum time between the TMS pulse and

the verbal report was 1–2 s. Furthermore, an effect of

speech on MEPs recorded from upper-limb muscles

has, to the best of our knowledge, never been reported.

Nevertheless, several studies have suggested that work-

ing memory tasks can induce changes in M1 excitability

(Honey et al., 2000; Cairo et al., 2004). Most of these

studies used protocols requiring the subject to press a

button (Tomasino and Gremese, 2016). Because partici-

pants did not perform any manual task, it seems unlikely

that such an effect of working memory would differentially

affect the MEPs elicited in the hand receiving vs. not

receiving the laser stimulus.

In conclusion, the present study shows that phasic

pain delivered to one of the two hand dorsum induces

an early excitatory effect on muscles of the stimulated

hand, possibly related to the spinal nociceptive

withdrawal reflex. Following this initial enhancement, the

nociceptive stimulus induces an inhibitory effect in flexor

and extensor muscles of both hands, but maximal at

flexor muscles of the stimulated hand. This later effect

may be related to nociceptive-motor interactions

occurring at cortical level, although late interactions at

spinal level cannot be ruled out. Finally, we show that

nociceptive stimuli induce a very late and long-lasting

facilitation in the flexor and extensor muscles of the

non-stimulated hand. This long-lasting effect, which was

not previously observed following non-nociceptive

stimulation of the median nerve, could be specific for

nociception.
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