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Abstract

Objects approaching us may pose a threat, and signal the need to initiate defensive behav-
ior. Detecting these objects early is crucial to either avoid the object or prepare for contact
most efficiently. This requires the construction of a coherent representation of our body, and
the space closely surrounding our body, i.e. the peripersonal space. This study, with 27
healthy volunteers, investigated how the processing of nociceptive stimuli applied to the
hand is influenced by dynamical visual stimuli either approaching or receding from the
hand. On each trial a visual stimulus was either approaching or receding the participant’s
left or right hand. At different temporal delays from the onset of the visual stimulus, a noci-
ceptive stimulus was applied either at the same or the opposite hand, so that it was pre-
sented when the visual stimulus was perceived at varying distances from the hand.
Participants were asked to respond as fast as possible at which side they perceived a noci-
ceptive stimulus. We found that reaction times were fastest when the visual stimulus
appeared near the stimulated hand. Moreover, investigating the influence of the visual sti-
muli along the continuous spatial range (from near to far) showed that approaching lights
had a stronger spatially dependent effect on nociceptive processing, compared to receding
lights. These results suggest that the coding of nociceptive information in a peripersonal
frame of reference may constitute a safety margin around the body that is designed to pro-
tect it from potential physical threat.

1. Introduction

Localizing potentially harmful objects approaching our body is essential to adequately defend
ourselves [1,2]. This ability requires the construction of a coherent representation of our body,
and the space closely surrounding our body, i.e. the peripersonal space. The peripersonal space
serves as a multisensory motor interface between our body and the environment [3,4], in
which information from the body surface (e.g. tactile or nociceptive stimuli) is integrated with
information from the external world (e.g. visual or auditory stimuli). This enables us to interact
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with the world: we can reach and grasp objects, and we can also avoid objects or defend our-
selves against threatening objects intruding our peripersonal space. In monkeys this ability has
been found to rely on bimodal visuotactile neurons in the ventral premotor cortex and the ven-
tral intraparietal sulcus [5], which fire both for tactile stimuli and for visual stimuli presented
near the stimulated area. Similarly, Dong et al. [6] found neurons in area 7b of the inferior pari-
etal lobe of monkeys, that respond to nociceptive stimuli and to dynamical visual stimuli mov-
ing towards the receptive fields of these neurons. Dong et al. [6] suggested that this area
provides visuo-somatic information about potentially noxious stimuli, and that it directs
motor adjustments so that body exposure and contact with the threatening stimuli is mini-
mized. In humans, a similar system has been proposed for tactile and visual stimuli (for a
review, see [7]), and more recently also for nociceptive and visual stimuli [8-12]. However,
unlike animal studies, most of the behavioral research in humans has used external (e.g. visual)
stimuli at only two fixed locations (i.e. one position near the participants, and one far from the
participants), instead of dynamical stimuli. There are several reasons why it could be more
interesting to study the influence of dynamical stimuli on nociceptive (and tactile) processing.
First, it would increase the ecological validity of the studies, as in real life objects are continu-
ously moving around in the environment. Second, it would make research in humans more
comparable to the animal studies mentioned above investigating multisensory integration
within the peripersonal space [5,6]. Third, the neural systems representing the peripersonal
space show a preference for moving stimuli over static stimuli, both in monkeys and in
humans. In monkeys, visual and tactile responses of some of the bimodal neurons in the pre-
motor cortex are directionally specific [13-15]. Moreover, the firing rates of some of these neu-
rons change dynamically with stimulus velocity [14]. Also in humans there is some evidence
that approaching visual, auditory and tactile stimuli evoke increased neural activity within the
intraparietal sulcus and the ventral premotor cortex [16,17]. Because of the relevance of mov-
ing objects to the peripersonal space system, Canzoneri, Magosso, & Serino [18] developed a
paradigm enabling to investigate the influence of dynamical auditory stimuli on tactile process-
ing. In this task, Canzoneri et al. [18] measured reaction times (RTs) to a tactile stimulus
applied to the right index finger while dynamical sounds, which gave the impression of either
approaching or receding from the subject’s hand, were presented. Tactile stimulation was deliv-
ered at different temporal delays from the onset of the sound, such that it occurred when the
sound source was perceived at varying distances from the body. Participants were asked to
respond as fast as possible, trying to ignore the sound. They found that an auditory stimulus
speeded up the processing of a tactile stimulus applied to the hand when the sound was admin-
istered within a limited distance from the hand. Moreover, results suggested that approaching
sounds had a stronger spatially-dependent effect on tactile processing compared to receding
sounds.

The ability to quickly localize stimuli on the body and in external space seems especially rel-
evant in the context of pain. Indeed, potentially harmful objects approaching our body have to
be quickly localized so that an appropriate defensive response can be prepared. In this study,
we adapted the paradigm of Canzoneri et al. [18] to investigate the influence of dynamical
visual stimuli on nociceptive processing. A visual stimulus was either approaching or receding
the participant’s left or right hand. At different temporal delays from the onset of the visual
stimulus, a nociceptive stimulus was applied either at the same or the opposite hand, so that it
was presented when the visual stimulus was perceived at varying distances from the hand. Par-
ticipants were asked to respond as fast as possible at which side they perceived a nociceptive
stimulus. We expected that RTs to nociceptive stimuli would progressively decrease as a func-
tion of the perceived approach of the visual stimulus. Conversely, we expected RT's to increase
as a function of the perceived recession of the visual stimulus. Moreover, we expected that this
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effect would be larger when visual stimuli were approaching/receding at the side of space in
which the stimulated hand resided as opposed to when they were approaching/receding at the
opposite side of space. The best fitting curves of the RT's as a function of the perceived position
of the visual stimuli in space were studied in order to compare the influence of approaching
versus receding visual stimuli on nociceptive processing.

2. Methods
2.1. Participants

30 paid participants volunteered to take part. Three participants (2 males, 1 female) were
excluded because they failed to feel the stimulation despite repeated displacement of the elec-
trodes (see section 2.2.). The final sample consisted of 27 participants (26 females, all right
handed) with a mean age of 21 years (ranging from 18 to 26 years). All of the participants had
normal or corrected-to-normal vision. Recent neurological, psychiatric or chronic pain dis-
eases and usual intake of psychotropic drugs were considered as exclusion criteria. The experi-
mental procedure was approved by the ethics committee of the faculty of psychology and
educational sciences of Ghent University (2014/46). All of the participants provided written
informed consent prior to taking part in the study.

2.2. Stimuli and apparatus

The nociceptive stimuli were delivered by means of intra-epidermal electrical stimulation (IES)
(DS7 Stimulator, Digitimer Ltd, UK), with stainless steel concentric bipolar electrodes (Nihon
Kohden, Japan; [19]). The electrodes consisted of a needle cathode (length: 0.1 mm, @: 1.4
mm). By gently pressing the device against the participant’s skin, the needle electrode was
inserted into the epidermis of the dorsum of the hand in the sensory territory of the superficial
branch of the radial nerve. Using intra-epidermal stimulation at maximum twice the absolute
detection threshold was shown to selectively activate the free nerve endings of the A§ fibers
[19-21]. The detection threshold was determined with single-pulse stimuli (0.5 ms square
wave pulse) using a staircase procedure [22]. The detection threshold was established sepa-
rately for each hand. Next, the stimulus intensity was set at twice the detection threshold. If
necessary, the intensity of the stimuli was adjusted so that the stimuli delivered to each hand
were perceived as being equally intense. During the course of the experiment, the stimuli con-
sisted of trains of four consecutive 0.5 ms square-wave pulses separated by a 5-ms inter-pulse
interval. Using a set of pain words from the Dutch McGill Pain questionnaire [23] the stimuli
were described as pricking. After each experimental block, the participants were asked to esti-
mate the intensity elicited by the nociceptive stimuli on a numeric graphic rating scale (10 cm)
with the following labels selected from the Dutch version of the McGill pain questionnaire
(Vanderiet at al., 1987): 0 = felt nothing, 2.5 = lightly intense, 5 = moderately intense,
7.5 = very intense, 10 = enormously intense). This scale was used to ensure that: (1) the stimuli
were still perceived, and (2) the percept elicited by the IES delivered to each of the participant’s
hands was still equivalent. If one of these two criteria was not met, the stimulus intensities were
modified (with a maximum intensity of 0.50 mA). If this adaptation proved to be unsuccessful
(i.e. if one of the criteria was still not met), the electrodes were displaced and the procedure was
restarted.

The visual stimuli were presented by means of fourteen green light-emitting diodes (LEDs),
and a red LED for fixation.

The participants sat on a chair in a dimly illuminated, sound-attenuated room, with their
head position fixed in a chin rest. The height of the chin rest was individually adapted. Partici-
pants rested their arms on the table in front of them, and placed their hands, palm downward
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on the table. The distance between the participants” hands and their trunk, as well as the dis-
tance between the participants’ index fingers was 40 cm. In total 14 LEDs were positioned at
different distances from the hands. 7 LEDs were positioned in the left side of space, and 7 LEDs
in the right side of space. At both sides, the first LED was positioned in between thumb and
index finger, the next six LEDs were positioned on a straight line one in front of the other with
12 cm in between successive LEDs, so that the last LED was 72 cm in front of the first LED. On
each trial, the LEDs on one side were successively illuminated, creating the illusion of a light
coming closer towards the participant (if the first LED illuminated was the LED at a distance of
72 cm from the participants), or going further away from the participant (if the first LED illu-
minated was the LED in between thumb and index finger). Each LED was illuminated for 280
ms, so that the total dynamical visual stimulus had a duration of 1960 ms. A red fixation LED
was positioned in between the LEDs in left and right space, 36 cm in front of the first LEDs.
This fixation LED was illuminated at the beginning of each trial, and was turned off for 1s at
the end of each trial.

2.3. Procedure

The experiment started by illuminating the LEDs one by one. Participants were asked to look
at the fixation LED and to indicate verbally at which side of space a light was illuminated (i.e.
“left” or “right”). This was done to ensure that participants could see all the LEDs. Next, partic-
ipants completed a practice phase of 14 trials, in which they executed the experimental task.
Participants had to achieve 90% correct performance in this practice phase in order to proceed
with the experiment.

Each trial started with the illumination of the fixation LED for 1s. Thereafter the dynamical
visual stimulus started. At different temporal delays after the onset of the visual stimulus, a noci-
ceptive stimulus could be presented: T1, a nociceptive stimulus was administered 170 ms from
light onset; T2, 450 ms from light onset; T3, 730 ms from light onset; T4, 1010 ms from light
onset; T5, 1290 ms from light onset; T6, 1570 ms from light onset; T7, 1850 ms from light onset.
This was true both for the approaching and the receding light. That way, the light was perceived
at different locations with respect to the body at the moment the nociceptive stimuli were pre-
sented. For example, when the light was approaching it appeared close at high temporal delays.
Conversely, when the light was receding, it appeared close at low temporal delays (see Fig 1).

The experiment consisted of 8 blocks of 56 trials each. The trials were created by crossing
the moving direction of visual stimulus (approaching vs. receding) with the side at which the
visual stimulus was presented (left vs. right side of space), the congruency of the visual and
nociceptive stimulus (congruent vs. incongruent), and the 7 different temporal delays (T1—
T7). 1/8 of the trials (i.e. 7 trials) per block were randomly assigned as catch trials, in which no
nociceptive stimulus was presented.

Participants were instructed to keep their gaze on the fixation LED during the whole block.
They were asked to respond as fast and accurately as possible which hand was stimulated (left
or right hand). Responses were given by means of two foot pedals, one positioned beneath the
toes, and one beneath their heel. Participants were instructed to keep the foot pedals depressed
during the experiment, and to lift either their toes or their heel to respond. Participants were
informed that the visual stimulus was unpredictive of the delivery of the subsequent nocicep-
tive target. The experiment took on average 60 minutes to complete.

2.4. Measures

Because participants were highly accurate in performing the task (see section 3.3.), perfor-
mance was only analyzed in terms of the reaction time (RT). Only RTs from correct trials were
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Fig 1. Experimental set-up. At the left side of the figure, a light is approaching the participant at the left side
of space. At T1 (170 ms from light onset) the participant gets a nociceptive stimulation to the left hand
(congruent to the side of space where the light is presented). At that time, the light is at 72 cm from the
participants hand. At the right side of the figure, a similar situation is depicted, however now the lightis
receding from the participants hand, so that the light is in between the thumb and the index finger at the time
of stimulation. Moreover, now the right hand is stimulated (incongruent to the side of space where the light is
presented). The dashed arrow indicates the moving direction of the lights.

doi:10.1371/journal.pone.0155864.g001

considered for analysis. RTs exceeding three times the median absolute deviation (MAD) [24]
were considered outliers and were trimmed from the analyses (4% of trials on average over all
conditions). Mean RTs were calculated for every temporal delay, for congruent and incongru-
ent trials, and for approaching and receding visual stimuli, creating 28 different conditions.

After the experiment participants were asked to indicate how threatening they thought the
visual lights were both when the light was approaching, and when the light was receding, on a
scale from 0 (not at all) to 10 (extremely). The perceived threat score was compared for
approaching and receding visual stimuli.

2.5. Analyses

Between each block participants were asked to rate the intensity of the stimulation for the left
and the right hand on a numeric graphic rating scale (10 cm) with the following labels selected
from the Dutch version of the McGill pain questionnaire [23]: 0 = felt nothing, 2.5 = lightly
intense, 5 = moderately intense, 7.5 = very intense, 10 = enormously intense. The equivalence
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of the average current intensity and the average self-reported intensity for the left compared to
the right hand was assessed using paired samples t-tests.

The perceived threat score was compared for approaching and receding lights using paired
samples t-tests.

Mean accuracies were investigated to check whether any participants performed poorly on
the task and therefore had to be excluded. However, accuracies were not of primary interest
here, and were therefore not further analyzed.

The reaction time data was analyzed with R software [25] using linear mixed effects mod-
els as implemented in the package “ImerTest: tests in linear mixed effect models” [26,27].
Linear mixed effects models account for the correlations in within-subject data by estimating
subject-specific deviations (or random effects) from each population-level factor (or fixed
factor) of interest (see [28], for an elaboration). The outcome variable of interest was the RT.
First all manipulated variables were taken into account, including the side of the stimulation
(left versus right hand). However, as this variable did not interact with any of the other vari-
ables, it was left out of further analyses to increase power and for the sake of parsimony (see
section 3.1.). The independent variables considered in the analysis were the visual stimulus
direction (approaching vs. receding lights), the congruency of the nociceptive target (congru-
ent vs. incongruent to the visual stimulus), and the temporal delay (T1 to T7). These were
manipulated within subjects. Each analysis required three steps. First, all relevant factors and
interactions were entered in the model as fixed factors, and we assessed whether it was neces-
sary to add a random effect for each of the fixed factors in the analysis: If a random effect sig-
nificantly increased the fit of the model, it was included in the final model. By default, a
random effect was added introducing adjustments to the intercept conditional on the Subject
variable. In the second step, we searched for the most parsimonious model that fitted the
data. To achieve this, we systematically restricted the full model, comparing the goodness of
fit using likelihood ratio tests. Finally, in the third step, we inspected the ANOVA table of the
final model and tested specific hypotheses about possible main effects or interactions (for a
similar approach, see [29-32]). P-values were calculated based on Satterthwaite’s approxima-
tions [33]. When an interaction effect was significant, it was further investigated with follow-
up contrast analyses. The different steps in the model building procedure are illustrated in
the supplementary information (S1 File).

3. Results
3.1. Intensity of the nociceptive stimulation

The mean current intensities used during the experiment were not significantly different for
the left (M = 0.43 mA, SD = 0.05) and the right (M = 0.43 mA, SD = 0.07) hand, t(26) = 0.42,

p =0.68. These values correspond to those used in previous studies that succeeded to selectively
activate nociceptors [19,20,34], and are much lower than those used in studies that failed to
show selective activation [35].

However, the mean self-reported intensities (numeric graphic rating scale) were signifi-
cantly lower for the left (M = 2.63, SD = 1.50) than for the right (M =3.72, SD = 1.77) hand, t
(26) = -3.54, p = 0.002. To check whether this difference in self-reported intensities had an
effect on task performance, the side of the nociceptive stimulus was added to the model as addi-
tional variable. Although the main effect of side (F(1,9394.6) = 65.67; p < 0.001) was signifi-
cant, indicating slower RT's when the left, compared to the right hand was stimulated, none of
the interaction effects of side with any of the other variables (all F < 3.5; p > 0.05) were signifi-
cant. For the sake of parsimony and to increase power, this variable was left out of further
analyses.
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In a number of trials participants didn’t feel anything, despite the fact that a stimulation to
one of both hands was applied. On average 1% (+3%) of the stimuli was not felt. Two partici-
pants did not feel respectively 7% and 12% of the stimuli. However, these participants still had
more than 80% correct responses in total, and were thus kept in the analyses (see section 3.3.).

3.2. Perceived threat value visual stimuli

Mean perceived threat scores were overall low, but significantly higher when the lights were
approaching (M = 1.78, SD = 2.47) the participants, than when they were receding (M = 0.81,
SD = 1.44), t(26) = 3.22, p = 0.003.

3.3. Accuracy

All participants had on average more than 80% correct task performance, and we decided to
keep all participants in the analyses. Mean accuracy was 96% (+ 4%). Accuracies were not fur-
ther analyzed.

3.4. Reaction times

The relationship between the RTs to the nociceptive targets, the different temporal delays at
which the nociceptive stimuli were administered (from T1 to T7), the visual stimulus direction
(approaching vs. receding) and the congruency of the nociceptive stimulation (congruent vs.
incongruent to the visual cue) are represented in Fig 2.

The linear mixed effects model that demonstrated the best fit with the data, included all
fixed factors together with their two-and three-way interactions, a random subject-based inter-
cept, a random trial-based intercept and a random effect for temporal delay and congruency. In
this final model, there was a significant main effect of visual stimulus direction (F(1,9414) =
12.04; p < 0.001), a significant main effect of temporal delay (F(6,30.8) = 12.21; p < 0.001), and
a significant main effect of congruency (F(1,27.7) = 7.72; p = 0.01). Furthermore, the interaction
effect between visual stimulus direction and temporal delay (F(6,9413.9) = 8.95; p < 0.001) and
the three-way interaction between visual stimulus direction, congruency, and temporal delay (F
(6,9398.4) = 3.76; p < 0.001) were significant. The interaction effect between visual stimulus
direction and congruency (F(1,9381.7) = 2.30; p = 0.13) and between congruency and temporal
delay (F(6,9385.5) = 1.51; p = 0.17) were not significant.

Congruent

680 -

640 -

RT

600 -

560 -

M T2 T3 T4 T5 T6 T M T T3 ™ 15 T6 T7
Temporal delay

Visual stimulus direction 4B Approaching # Receding
Fig 2. Mean RTs to the nociceptive targets and their associated standard errors in function of the
different temporal delays at which the nociceptive stimuli were administered (from T1 to T7), the

direction of the visual stimulus (approaching vs. receding) and the congruency of the nociceptive
stimulation (congruent vs. incongruent to the visual cue).

doi:10.1371/journal.pone.0155864.9002
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To further investigate the three-way interaction, two separate linear mixed effects models
were fitted for congruent and incongruent trials with visual stimulus direction and temporal
delay as independent variables and RT as dependent variable.

For congruent trials, the model that demonstrated the best fit with the data included the
fixed factors and their interaction, a random subject-based intercept, a random trial-based
intercept and a random effect for temporal delay. In this model, there was a main effect of
visual stimulus direction (F(1,4642.7) = 11.85; p < 0.001), a main effect of temporal delay (F
(6,29.7) = 14.88; p < 0.001), and an interaction effect between visual stimulus direction and
temporal delay (F(6,4634.4) = 10.48; p < 0.001). Follow-up tests indicated that at T1, RTs were
significantly slower for approaching than for receding visual stimuli (x*(1) = 27.03, p < 0.001).
This effect reversed at T3, T4, T5 and T7, where reaction times were significantly slower for
receding than for approaching visual stimuli (T3: x*(1) =19.14, p <0.001; T4: x*(1) = 10.49,
p=0.001; T5: x*(1) = 9.77, p = 0.002; T7: x*(1) = 7.72, p = 0.005). At T2 and T6 reaction times
did not differ significantly between approaching versus receding visual stimuli (T2: %*(1) =
0.03, p = 0.86; T6: (1) = 0.42, p = 0.52).

For incongruent trials, the final model consisted of all fixed factors, and their interaction, a
random subject-based intercept, and a random effect for visual stimulus direction and temporal
delay. In this model there was a main effect of temporal delay (F(6,28.1) = 8.32; p < 0.001), and
a significant interaction effect between visual stimulus direction and temporal delay (F
(6,4646.1) = 2.39; p = 0.03). The main effect of visual stimulus direction was not significant (F
(1,27.3) = 1.14; p = 0.30). Follow-up tests indicated that at T2, RTs were marginally signifi-
cantly faster for receding than for approaching trials (3*(1) = 3.28, p = 0.07). Conversely, at T7,
RTs were significantly faster for approaching than for receding trials (x*(1) = 7.15, p = 0.008).
None of the other comparisons were significant (all x> < 1.6; all p > 0.20).

Because the difference between receding and approaching trials for incongruent trials was
only present at two time points and thus proved to be less consistent, further analyses focused
on congruent trials. Pairwise comparisons between the different temporal delays for approach-
ing visual stimuli showed that RTs at T1 were significantly slower than at any other temporal
delay (all |t| > 5.00; all p < 0.001); RT's at T2 were significantly slower than reaction times at
T3 to T7 (all [t| > 1.5; all p < 0.05); RTs at T3 were significantly slower than RTs at T6 and T7
(all |t| > 1.5; p < 0.05); RTs at T4 were marginally significantly slower than RTs at T6 (t(26) =
-1.61; p = 0.06) and significantly slower than RT's at T7 (t(26) = -2.54; p = 0.009); finally RT's
at T5 were marginally significantly slower than at T7 (t(26) = -1.70; p = 0.05). This provides
an indication that for approaching visual stimuli, reaction times overall decreased. Moreover,
this decrease was stronger for small temporal delays than for larger temporal delays. For reced-
ing visual stimuli, RTs remained stable at small temporal delays, and only dropped at T6 and
T7. This is shown by a significant difference between RT's at T1 to T4 versus RTs at T6 and T7
(all |t] > 2.00; all p < 0.006), while RTs in either group did not differ significantly from each
other (all |t| < 1.5;all p > 0.05). RTs at T5 were somewhere in between the two groups, as RT's
at T5 did not differ significantly from RTs at T1, T2, T4 and T7 (all |t| < 1.5; all p > 0.05), but
participants reacted significantly faster at T5 than at T3 (t(26) = -1.84; p = 0.04), and signifi-
cantly slower at T5 than at T6 (t(26) = -3.20; p = 0.002).

Finally, we evaluated whether the model for congruent trials could be further simplified by
considering temporal delay as a continuous variable instead of a factor, so that T1 corresponds
to 170 ms, T2 to 450 ms, T3 to 730 ms, T4 to 1010 ms, T5 to 1290 ms, T6 to 1570 ms and T7 to
1850 ms. The nature of the relationship between the independent variable temporal delay and
the dependent variable RT was investigated by fitting models with RT as dependent variable
and temporal delay as independent variable separately for approaching and receding visual sti-
muli. At each time the restricted models (with temporal delay as continuous variable) were
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Fig 3. Mean RTs and fitted curves for the relationship between temporal delay and reaction time (RT) for congruent trials. For
approaching visual stimuli a cubic model fitted the data best. For receding visual stimuli, a quartic model was used to describe the data.

doi:10.1371/journal.pone.0155864.9003

compared with the full model (with temporal delay as categorical variable). For approaching
visual stimuli a linear relationship was first considered, assuming a constant decrease/increase
of RT a as a function of temporal delay. This model fitted significantly worse than the model
with temporal delay as a categorical predictor (x*(5) = 35.30, p < 0.001). Next, a quadratic rela-
tionship was considered by adding the square of the independent variable temporal delay to the
model. This model still fitted the data significantly worse than the full model (x*(4) = 11.69,

p =0.02). Next, a cubic relationship was considered, and this model did not fit the data signifi-
cantly worse than the full model (x*(3) = 2.97, p = 0.40). For receding visual stimuli, the same
strategy was applied. Again, the linear (%*(5) = 19.79, p = 0.001) and the quadratic model
(x*(4) = 15.36, p =0.004) fitted significantly poorer than the model with the categorical predic-
tor. Now, also the cubic model fitted the data significantly worse (x*(3) = 11.37, p=0.01).
Finally, a quartic model did not fit the data significantly worse (x*(2) = 2.03; p = 0.36). The fit-
ted curves are shown in Fig 3. The slopes of the tangent lines evaluated at each of the seven
time points was calculated for the fitted curves for approaching and receding visual stimuli (see
Table 1). For approaching visual stimuli, RTs decreased strongly at low temporal delays (T1
and T2), and remained more stable at higher temporal delays. For receding visual stimuli, RTs
remain stable at low temporal delays (and even increased a little bit), to decrease only at higher
temporal delays (from T5 onwards).
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Table 1. Slopes of the tangent lines evaluated at the 7 time points.

T1 (170 ms) T2(450 ms) T3(730 ms)
Approaching -0.21 -0.12 -0.05
Receding -0.09 0.03 0.02

doi:10.1371/journal.pone.0155864.t001

4. Discussion

T4(1010 ms) T5(1290 ms) T6(1570 ms) T7(1850 ms)
-0.007 -0.023 -0.07
-0.10 -0.05 0.16

This study investigated the influence of dynamical visual stimuli on nociceptive processing.
Results showed that visual stimuli presented near the stimulated hand influenced nociceptive

processing more than visual stimuli presented far from the hand, providing evidence for a
body-part centered peripersonal frame of reference for the processing of nociceptive stimuli.
Moreover, by using dynamical visual stimuli we were able to investigate the influence of visual
stimuli along a continuous spatial range (from near to far space) both for approaching and

receding stimuli.

To adequately defend ourselves against potential threats we need to be able to construct a

coherent representation of our body and the space closely surrounding our body (i.e. the peri-
personal space). Within this space the location of somatosensory stimuli, the location of visual
stimuli close to the body and information about body posture are integrated [7,36,37]. In mon-
keys this ability depends on neurons with multimodal receptive fields (RFs), found mainly in
the premotor and intraparietal areas [13,38]. These neurons are activated in response to both
tactile stimuli and to visual stimuli occurring close to the stimulated body parts. In humans,

the use of a peripersonal frame of reference for the localization of somatosensory stimuli has
been demonstrated in neuropsychological studies with patients suffering from crossmodal
extinction after a right hemisphere stroke. These patients can feel a tactile stimulation to their
left hand in isolation, but when the right hand is concurrently stimulated (unimodal extinc-
tion) or when a right visual stimulus was presented near the right hand (crossmodal extinction)
patients fail to report the left hand stimulation. However, when the right visual stimulus was
presented far from the patients’ hand, the degree of extinction was reduced [39,40]. These
results are in agreement with the electrophysiological findings from monkeys suggesting that
the representation of peripersonal space is body-part centered [13]. Behavioral studies with
healthy volunteers using a crossmodal congruency task [41-44] (for a review see [7]) found

similar results.

Research investigating whether nociceptive stimuli are also mapped in a peripersonal frame
of reference is more scarce. Dong et al. [6] found neurons in area 7b of monkeys that responded
both to nociceptive stimuli and to visual stimuli approaching the receptive field of these neu-
rons, especially when these visual stimuli were threatening or novel. Recently, we suggested the
existence of a peripersonal frame of reference for mapping nociceptive stimuli in humans using
temporal order judgment (TOJ) tasks [8,9]. In these tasks participants received two nociceptive
stimulations, one to each hand, with different stimulus onset asynchronies (SOA’s) between

both hands. Slightly before the first nociceptive stimulation a visual cue stimulus was presented
either in the left or the right side of space, and either near or far from the participants” hand.
We found that visual stimuli presented near the stimulated hand facilitated processing of the
nociceptive stimuli applied to that hand. Conversely, visual stimuli presented far from the
hand only influenced nociceptive processing to a lesser extent [8,9]. In the current study we

were able to replicate these findings showing that when the visual stimuli were presented at the

side of space of the stimulated hand, reaction times at T1 were significantly faster for receding
visual stimuli than for approaching visual stimuli. This can only be due to the fact that at this
temporal delay, the visual stimulus was presented near the participants’ hand for receding
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visual stimuli, but far from the hand for approaching visual stimuli. This indicates that noci-
ceptive processing was mostly facilitated when a visual stimulus was presented near as com-
pared to far from the stimulated hand. This difference between approaching and receding
visual stimuli at T1 was not significant when the visual stimuli were presented at the opposite
side of space of the stimulated hand, indicating that it is especially the proximity to the stimu-
lated body part and not so much to the body as a whole that is important. Taken together these
results confirm previous findings with a different paradigm, and provide evidence for a peri-
personal frame of reference centered on the stimulated body-part for the localization of noci-
ceptive stimuli.

An important new aspect of the present study was the use of dynamical visual stimuli
instead of static stimuli at two fixed positions (one near, one far) used in most previous studies.
The use of moving stimuli is more ecologically valid and more comparable to animal studies
investigating multimodal integration in the peripersonal space [5,6]. Furthermore studies in
both humans and monkeys [13-17] have shown that the neural systems representing the peri-
personal space show a preference for moving stimuli. By using dynamical visual stimuli, we
were able to investigate multisensory integration along a continuum between near and far
space. This was done by searching the best fitting function for the relationship between the RT's
and the temporal delay at which the nociceptive stimuli were presented. This was only investi-
gated for congruent trials, because the visual stimulus direction (approaching versus receding)
most clearly affected the RTs for these trials, indicating that the distance of the visual stimuli to
the body had a larger influence on RT's for congruent than for incongruent trials. For
approaching trials a cubic function adequately described the data, indicating that RT's did not
decrease linearly as a function of the approaching light. Indeed, the RTs dropped strongly in
the beginning (T1 and T2), and decreased more slowly at higher temporal delays. This is also
shown by the fact that RT's at low temporal delays (T1 and T2) were significantly higher than
reaction times to nociceptive stimuli presented at higher temporal delays. For receding trials, a
quartic function fitted the data well, indicating that reaction times did not increase/decrease
linearly with the receding light. For these trials reaction times remained stable (and slightly
increased) at low temporal delays, and then slowly decreased at higher temporal delays. It is
surprising that despite the fact that the lights receded from the hand, reaction times neverthe-
less decreased at higher temporal delays (when the light was far away from the hand). Previous
studies using a similar paradigm [18,45,46] also did not find the expected increase in RTs when
stimuli were receding. However, in these studies RT's did not decrease at high temporal delays,
but remained stable. It is important to note that there are some differences between these stud-
ies and the present study. First, these studies used auditory stimuli and tactile targets [18,45],
or visual stimuli and tactile targets [46], instead of the visual stimuli and nociceptive targets
used in the present study. Next, in the present study both the left or the right hand could be
stimulated and the lights were approaching/receding at the same or the opposite side of space.
Participants had to indicate which hand was stimulated (localization task). The previous stud-
ies only stimulated the right hand [18] or cheek [45] and participants had to indicate whether
they felt a stimulation (detection task). Furthermore, Canzoneri et al. [18] and Serino et al. [46]
also used ‘unimodal’ stimuli, i.e. tactile stimuli could occur during a silence period, preceding
or following sound/visual stimulus administration. Serino et al. [46] used these unimodal trials
as a baseline. Subtracting the fastest unimodal tactile condition from the bimodal conditions,
gives a measure of the facilitation effect, due to the bimodal stimulation. They assessed the
modulation of the facilitation effect in function of the temporal delay, instead of the raw RTs.
An additional advantage of using unimodal trials is that it partly controls for spurious modula-
tions of RT's due to an expectancy effect. Moreover, it controls for between-subject differences
in RTs to tactile stimuli. Relatedly, Canzoneri et al. [18] and Teneggi et al. [45] had more catch
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trials (respectively 40% and ~33% out of the total amount of trials, compared to 12.5% in the
present study). These catch trials should ensure that the expectation to receive a nociceptive
stimulation to one of the hands does not increase with higher temporal delays. In the present
study, catch trials were presented in 1/8 of the trials in each block. Given that no unimodal tri-
als were used in the present experiment, it could be that the amount of catch trials was not suf-
ficient to avoid the fact that people expected to get a stimulation, and that this expectation
increased as the trial proceeded. We chose to eliminate the unimodal trials and to decrease the
amount of catch trials to limit the overall amount of trials (and therefore the duration of the
experiment) to ensure that participants could remain concentrated until the very end. These
differences can be the cause of the decrease in RTs for receding stimuli. However despite this
general effect of temporal delay, we were able to find a differential effect of visual stimulus
direction (approaching vs. receding) on RTs, indicating that over and above the general
decrease in reaction times with time, the direction of the lights significantly influenced RTs.

In accordance with the results of Canzoneri et al. [18] and Serino et al. [46] in the context of
touch, our results suggest that the approaching lights had a stronger spatially dependent effect
on nociceptive processing, compared to the receding lights. Indeed, the cubic function describ-
ing the relationship between RTs and the temporal delay at which nociceptive stimuli were
delivered, showed a steep decrease immediately after the onset of the visual stimuli. Conversely,
for the receding lights no such steep increase/decrease was present. In fact, reaction times
remained stable and only decreased in the end, which is, as argued above, probably due to an
increasing expectation of receiving a stimulation. These results are in agreement with studies in
primates and humans showing adaptive avoidance responses to both real and simulated
approaching stimuli [47-49]. For example, a rapidly expanding shadow elicits fear responses in
rhesus monkeys [48] and human infants [50], but rapidly contracting shadows do not. Simi-
larly, in the present study, participants rated the approaching stimuli as more threatening than
the receding stimuli, albeit that the overall level of fear was low. Bimodal neurons in the ventral
premotor cortex and the posterior parietal cortex of monkeys respond preferentially to
approaching visual stimuli [51-53]. Moreover, Cooke and Graziano [4,54] found that when
the monkeys’ brain regions that respond to approaching or nearby objects are stimulated, the
animal executes defensive movements like withdrawing or blocking. At a behavioral level,
humans process tactile stimuli applied to the cheek more rapidly when an object approached
the cheek or the region closely surrounding the cheek, but not when this object was receding
from the cheek [55]. These results can be explained by the fact that objects approaching us may
pose a threat, and signal the need to initiate defensive behavior. Detecting these objects early is
therefore crucial to either avoid the object, or prepare for contact most efficiently. In accor-
dance with these results, Cléry et al. [56] demonstrated that tactile processing on the face can
be enhanced by looming visual stimuli. More specifically, tactile processing was most enhanced
when the tactile stimulus was applied at the expected time and location of impact of the loom-
ing visual stimulus. Therefore, the cortical network involved in the construction of the periper-
sonal space would play a key role in predicting the impact of a stimulus on our body [56].
Serino et al. [46] suggested that the degree of preference for approaching stimuli might vary for
different body parts. These authors found that tactile detection on the hand was affected both
by approaching and receding sounds, although receding stimuli had a less defined spatial gradi-
ent. Conversely, tactile detection applied to the trunk and the face was only affected by
approaching sounds, and not by receding sounds. Moreover, comparing the boundaries of the
peripersonal space around the hand, the face and the trunk, showed that the boundaries were
smallest for the peri-hand space, intermediate for the peri-face space, and largest for the peri-
trunk space. These findings are compatible with the function of the peripersonal space as a
multisensory-motor interface for body-object interaction, either to plan an approaching
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movement, or to react to potential threats. Different body parts interact with objects over dif-
ferent portions of space: hand-object interactions occur within a limited space around the arm
[57], face-object interactions mainly occur in the context of bringing an object to your mouth
within the upper space [58], while trunk-object interactions materialize in a larger portion of
space and are related to whole-body actions, such as walking [59]. Moreover, the hand usually
receives touches both from approaching and receding stimuli, whereas it is much more likely
that face or trunk tactile stimulation originates from an approaching stimulus. These studies
suggest that the peripersonal frame of reference may constitute a safety margin around the
body that is designed to protect it from potential physical threat and that represents a mecha-
nism for preserving homeostatic control over the body [60,61]. Recently, it has been suggested
that the peripersonal space representation cannot only be shaped by actions, but can also be
modulated by emotional and social information (for a review, see [62]).

Neuroimaging studies have demonstrated that fronto-parietal brain regions, homologous to
the brain regions hosting bimodal neurons in non-human primates, play an important role in
the construction of a multimodal representation of the peripersonal space for tactile stimuli
[17,63]. Based on the present study, it is reasonable to hypothesize that premotor and parietal
areas also play an important role in nociceptive processing and pain perception [64]. Nocicep-
tive inputs activate a large array of cortical areas, such as mainly opercular-insular and cingu-
lated areas, but also frontal and parietal areas [65]. Recently, it was postulated that these areas
are not specifically involved in nociceptive processing. Instead, activity in these areas would
reflect the detection, localization and reaction to sensory events that are meaningful for the
integrity of the body [64]. Based on the present and previous studies [8,9] it can be suggested
that the involvement of frontal and parietal areas in nociceptive processing may serve the inte-
gration of nociceptive information into a multisensory representation of the body and the
space closely surrounding the body.

This study has some limitations. First, the use of dynamical visual stimuli increased the eco-
logical validity of this study. However, one could question the generalizability of a standardized
experimental situation to real life. Indeed, it could be interesting to investigate the effect of real
life objects (e.g. a syringe or a needle) approaching (or receding) from participants, as has been
done in some animal studies (e.g. [6]) and recently also in humans [66,67]. For example, Ros-
setti et al. [67] investigated the skin conductance response (SCR) to a noxious stimulus (i.e. a
needle) approaching and touching the hand, or stopping at different distances (near or far)
from the hand. They found that anticipatory responses to an incoming threat were reduced
when the stimulus targets a spatial position far away from the body, as compared to a near or
bodily location. Despite the larger ecological validity of the use of real life objects, the use of
standardized visual stimuli enabled us to investigate the influence of visual stimuli on nocicep-
tive processing along a spatial continuum from near to far space, which would have been much
more difficult to investigate in less standardized situations. Second, despite the procedure used
to match the intensities of the nociceptive stimuli applied to both hands, the strict equivalence
in subjective perception of the intensities between the two hands could not always be achieved.
However, these differences were rather marginal (2.63 to 3.72 cm on a rating scale of 10 cm),
and analyses showed that the side of stimulation did not affect the RTs. Finally, as mentioned
above, we found a general effect of the temporal delay at which nociceptive stimuli were
applied, which is most likely due to an increasing expectation to receive a nociceptive stimulus
with time. Future studies could possibly avoid this by adding more trials without nociceptive
stimulation (i.e. catch trials).

In conclusion, the present study provides evidence for the mapping of nociceptive stimuli in
a peripersonal frame of reference. This guarantees a swift and efficient localization of threaten-
ing objects by integrating nociceptive information with visual information presented near the
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stimulated body part, enabling the preparation of a defensive motor response towards the loca-
tion of threat. Moreover, by using dynamical visual stimuli we were able to investigate the rela-
tionship between nociceptive processing and the position of visual stimuli along a spatial
continuum from near to far space. For approaching visual stimuli this relationship is best
described by a cubic function, meaning that reaction times sharply decrease quickly after the
onset of the visual stimulus. Conversely, for receding stimuli, no such sharp increase or
decrease was found. This indicates that people are sensitive to the direction of visual stimuli,
with approaching objects influencing nociceptive processing more profoundly than receding
objects.

Supporting Information

S1 File. Model building procedure of linear mixed effect models.
(DOCX)

Author Contributions

Conceived and designed the experiments: ALDP GC VL. Performed the experiments: ALDP.
Analyzed the data: ALDP. Contributed reagents/materials/analysis tools: ALDP. Wrote the
paper: ALDP GC VL.

References

1. Legrain V, Mancini F, Sambo CF, Torta DM, Ronga |, Valentini E. Cognitive aspects of nociception and
pain: bridging neurophysiology with cognitive psychology. Neurophysiol Clin 2012; 42:325-36. doi: 10.
1016/j.neucli.2012.06.003 PMID: 23040703

2. Mancini F, Longo MR, lannetti GD, Haggard P. A supramodal representation of the body surface. Neu-
ropsychologia 2011; 49:1194-201. doi: 10.1016/j.neuropsychologia.2010.12.040 PMID: 21199662

3. Rizzolatti G, Fadiga L, Fogassi L, Gallese V. The space around us. Science 1997; 277:190-1. doi: 10.
1126/science.277.5323.190 PMID: 9235632

4. Graziano MS, Cooke DF. Parieto-frontal interactions, personal space, and defensive behavior. Neurop-
sychologia 2006; 44:2621-35. doi: 10.1016/j.neuropsychologia.2005.09.011 PMID: 17128446

5. Graziano MS, Yap GS, Gross CG. Coding of visual space by premotor neurons. Science 1994;
266:1054—-7. PMID: 7973661

6. Dong WK, Chudler EH, Sugiyama K, Roberts VJ, Hayashi T. Somatosensory, multisensory, and task-
related neurons in cortical area 7b (PF) of unanesthetized monkeys. J Neurophysiol 1994; 72:542—64.
PMID: 7983518

7. Spence C, Driver J. Crossmodal space and crossmodal attention. Oxford: Oxford University Press;
2004.

8. De Paepe AL, Crombez G, Spence C, Legrain V. Mapping nociceptive stimuli in a peripersonal frame
of reference: evidence from a temporal order judgment task. Neuropsychologia 2014; 56:219-28. doi:
10.1016/j.neuropsychologia.2014.01.016 PMID: 24486423

9. De Paepe AL, Crombez G, Legrain V. From a Somatotopic to a Spatiotopic Frame of Reference for the
Localization of Nociceptive Stimuli. PLoS One 2015; 10:e0137120. doi: 10.1371/journal.pone.0137120
PMID: 26317671

10. Sambo CF, Liang M, Cruccu G, lannetti GD. Defensive peripersonal space: the blink reflex evoked by
hand stimulation is increased when the hand is near the face. J Neurophysiol 2012; 107:880-9. doi: 10.
1152/jn.00731.2011 PMID: 22090460

11. Sambo CF, Forster B, Williams SC, lannetti GD. To Blink or Not to Blink: Fine Cognitive Tuning of the
Defensive Peripersonal Space. J Neurosci 2012; 32:12921-7. doi: 10.1523/JNEUROSCI.0607-12.
2012 PMID: 22973016

12. Sambo CF, lannetti GD. Better Safe Than Sorry? The Safety Margin Surrounding the Body Is Increased
by Anxiety. J Neurosci 2013; 33:14225-30. doi: 10.1523/JNEUROSCI.0706-13.2013 PMID: 23986256

13. Graziano MS, Hu XT, Gross CG. Visuospatial properties of ventral premotor cortex. J Neurophysiol
1997; 77:2268-92. PMID: 9163357

PLOS ONE | DOI:10.1371/journal.pone.0155864 May 25, 2016 14/17


http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0155864.s001
http://dx.doi.org/10.1016/j.neucli.2012.06.003
http://dx.doi.org/10.1016/j.neucli.2012.06.003
http://www.ncbi.nlm.nih.gov/pubmed/23040703
http://dx.doi.org/10.1016/j.neuropsychologia.2010.12.040
http://www.ncbi.nlm.nih.gov/pubmed/21199662
http://dx.doi.org/10.1126/science.277.5323.190
http://dx.doi.org/10.1126/science.277.5323.190
http://www.ncbi.nlm.nih.gov/pubmed/9235632
http://dx.doi.org/10.1016/j.neuropsychologia.2005.09.011
http://www.ncbi.nlm.nih.gov/pubmed/17128446
http://www.ncbi.nlm.nih.gov/pubmed/7973661
http://www.ncbi.nlm.nih.gov/pubmed/7983518
http://dx.doi.org/10.1016/j.neuropsychologia.2014.01.016
http://www.ncbi.nlm.nih.gov/pubmed/24486423
http://dx.doi.org/10.1371/journal.pone.0137120
http://www.ncbi.nlm.nih.gov/pubmed/26317671
http://dx.doi.org/10.1152/jn.00731.2011
http://dx.doi.org/10.1152/jn.00731.2011
http://www.ncbi.nlm.nih.gov/pubmed/22090460
http://dx.doi.org/10.1523/JNEUROSCI.0607-12.2012
http://dx.doi.org/10.1523/JNEUROSCI.0607-12.2012
http://www.ncbi.nlm.nih.gov/pubmed/22973016
http://dx.doi.org/10.1523/JNEUROSCI.0706-13.2013
http://www.ncbi.nlm.nih.gov/pubmed/23986256
http://www.ncbi.nlm.nih.gov/pubmed/9163357

@’PLOS ‘ ONE

The Influence of Dynamical Visual Stimuli on Nociceptive Processing

14.

15.

16.

17.

18.

19.

20.

21.

22,

23.

24,

25.

26.
27.

28.

29.

30.

31.

32.

33.

34.

35.

FogassiL, Gallese V, Fadiga L, Luppino G, Matelli M, Rizzolatti G. Coding of peripersonal space in infe-
rior premotor cortex (area F4). J Neurophysiol 1996; 76:141-57. PMID: 8836215

Duhamel JR, Colby CL, Goldberg ME. Ventral intraparietal area of the macaque: congruent visual and
somatic response properties. J Neurophysiol 1998; 79:126—-36. PMID: 9425183

Bremmer F, Schlack A, Shah NJ, Zafiris O, Kubischik M, Hoffmann K, et al. Polymodal Motion Process-
ing in Posterior Parietal and Premotor Cortex: A Human fMRI Study Strongly Implies Equivalencies
between Humans and Monkeys. Neuron 2001; 29:287-96. doi: 10.1016/S0896-6273(01)00198-2
PMID: 11182099

Makin TR, Holmes NP, Zohary E. Is That Near My Hand? Multisensory Representation of Peripersonal
Space in Human Intraparietal Sulcus. J Neurosci 2007; 27:731-40. doi: 10.1523/JNEUROSCI.3653-
06.2007 PMID: 17251412

Canzoneri E, Magosso E, Serino A. Dynamic Sounds Capture the Boundaries of Peripersonal Space
Representation in Humans. PLoS One 2012; 7:3—10. doi: 10.1371/journal.pone.0044306

Inui K, Tsuji T, Kakigi R. Temporal Analysis of Cortical Mechanisms for Pain Relief by Tactile Stimuliin
Humans. Cereb Cortex 2006; 16:355—65. doi: 10.1093/cercor/bhi114 PMID: 15901650

Mouraux A, lannetti GD, Plaghki L. Low intensity intra-epidermal electrical stimulation can activate
Adelta-nociceptors selectively. Pain 2010; 150:199-207. doi: 10.1016/j.pain.2010.04.026 PMID:
20510515

Mouraux A, Marot E, Legrain V. Short trains of intra-epidermal electrical stimulation to elicit reliable
behavioral and electrophysiological responses to the selective activation of nociceptors in humans.
Neurosci Lett 2014; 561:69—73. doi: 10.1016/j.neulet.2013.12.017 PMID: 24361132

Churyukanov M, Plaghki L, Legrain V, Mouraux A. Thermal detection thresholds of Ad- and C-fibre
afferents activated by brief CO2 laser pulses applied onto the human hairy skin. PLoS One 2012; 7:
€35817. doi: 10.1371/journal.pone.0035817 PMID: 22558230

Vanderiet K, Adriaensen H, Carton H, Vertommen H. The McGill Pain Questionnaire constructed for
the Dutch language (MPQ-DV). Preliminary data concerning reliability and validity. Pain 1987; 30:395—
408. doi: 10.1016/0304-3959(87)90027-3 PMID: 3670884

Leys C, Ley C, Klein O, Bernard P, Licata L. Detecting outliers: Do not use standard deviation around
the mean, use absolute deviation around the median. J Exp Soc Psychol 2013; 49:764—6. doi: 10.1016/
j.jesp.2013.03.013

R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical
Computing. 2015.

Pinheiro JC, Bates DM. Mixed-Effects Models in S and S-PLUS. New York: Springer-Verlag; 2000.

Kuznetsova A, Brockhoff PB, Christensen RHB. ImerTest: Tests in Linear Mixed Effects Models. R
package version 2.0-30 2016.

West BT, Welch KB, Galecki AT. Linear mixed models: A practical guide using statistical software. Lon-
don: Chapman and Hall/CRC; 2007.

De Ruddere L, Goubert L, Prkachin KM, Louis Stevens MA, Van Ryckeghem DML, Crombez G. When
you dislike patients, pain is taken less seriously. Pain 2011; 152:2342-7. doi: 10.1016/j.pain.2011.06.
028 PMID: 21943961

De Ruddere L, Goubert L, Stevens M, Amanda AC, Crombez G. Discounting pain in the absence of
medical evidence is explained by negative evaluation of the patient. Pain 2013; 154:669-76. doi: 10.
1016/j.pain.2012.12.018 PMID: 23391696

Durnez W, Van Damme S. Trying to Fix a Painful Problem: The Impact of Pain Control Attempts on the
Attentional Prioritization of a Threatened Body Location. J Pain 2015; 16:135-43. doi: 10.1016/j.
neuron.2014.02.016 PMID: 25463700

Verbruggen F, Aron AR, Stevens MA, Chambers CD. Theta burst stimulation dissociates attention and
action updating in human inferior frontal cortex. PNAS 2010; 107:13966—71. doi: 10.1073/pnas.
1001957107/-/DCSupplemental.www.pnas.org/cgi/doi/10.1073/pnas.1001957107 PMID: 20631303

Satterthwaite FE. An approximate distribution of estimates of variance components. Biometrics Bull
1946; 2:1104.

Colon E, Nozaradan S, Legrain V, Mouraux A. Steady-state evoked potentials to tag specific compo-
nents of nociceptive cortical processing. Neuroimage 2012; 60:571-81. doi: 10.1016/j.neuroimage.
2011.12.015 PMID: 22197788

de Tommaso M, Santostasi R, Devitofrancesco V, Franco G, Vecchio E, Delussi M, et al. A compara-
tive study of cortical responses evoked by transcutaneous electrical vs CO(2) laser stimulation. Clin
Neurophysiol 2011; 122:2482—7. doi: 10.1016/j.clinph.2011.05.006 PMID: 21641860

PLOS ONE | DOI:10.1371/journal.pone.0155864 May 25, 2016 15/17


http://www.ncbi.nlm.nih.gov/pubmed/8836215
http://www.ncbi.nlm.nih.gov/pubmed/9425183
http://dx.doi.org/10.1016/S0896-6273(01)00198-2
http://www.ncbi.nlm.nih.gov/pubmed/11182099
http://dx.doi.org/10.1523/JNEUROSCI.3653-06.2007
http://dx.doi.org/10.1523/JNEUROSCI.3653-06.2007
http://www.ncbi.nlm.nih.gov/pubmed/17251412
http://dx.doi.org/10.1371/journal.pone.0044306
http://dx.doi.org/10.1093/cercor/bhi114
http://www.ncbi.nlm.nih.gov/pubmed/15901650
http://dx.doi.org/10.1016/j.pain.2010.04.026
http://www.ncbi.nlm.nih.gov/pubmed/20510515
http://dx.doi.org/10.1016/j.neulet.2013.12.017
http://www.ncbi.nlm.nih.gov/pubmed/24361132
http://dx.doi.org/10.1371/journal.pone.0035817
http://www.ncbi.nlm.nih.gov/pubmed/22558230
http://dx.doi.org/10.1016/0304-3959(87)90027-3
http://www.ncbi.nlm.nih.gov/pubmed/3670884
http://dx.doi.org/10.1016/j.jesp.2013.03.013
http://dx.doi.org/10.1016/j.jesp.2013.03.013
http://dx.doi.org/10.1016/j.pain.2011.06.028
http://dx.doi.org/10.1016/j.pain.2011.06.028
http://www.ncbi.nlm.nih.gov/pubmed/21943961
http://dx.doi.org/10.1016/j.pain.2012.12.018
http://dx.doi.org/10.1016/j.pain.2012.12.018
http://www.ncbi.nlm.nih.gov/pubmed/23391696
http://dx.doi.org/10.1016/j.neuron.2014.02.016
http://dx.doi.org/10.1016/j.neuron.2014.02.016
http://www.ncbi.nlm.nih.gov/pubmed/25463700
http://dx.doi.org/10.1073/pnas.1001957107/-/DCSupplemental.www.pnas.org/cgi/doi/10.1073/pnas.1001957107
http://dx.doi.org/10.1073/pnas.1001957107/-/DCSupplemental.www.pnas.org/cgi/doi/10.1073/pnas.1001957107
http://www.ncbi.nlm.nih.gov/pubmed/20631303
http://dx.doi.org/10.1016/j.neuroimage.2011.12.015
http://dx.doi.org/10.1016/j.neuroimage.2011.12.015
http://www.ncbi.nlm.nih.gov/pubmed/22197788
http://dx.doi.org/10.1016/j.clinph.2011.05.006
http://www.ncbi.nlm.nih.gov/pubmed/21641860

@’PLOS ‘ ONE

The Influence of Dynamical Visual Stimuli on Nociceptive Processing

36.

37.

38.

39.

40.

41.

42,

43.

44,

45.

46.

47.

48.

49.
50.

51.

52.

53.

54.

55.

56.

57.

58.

Cardinali L, Brozzoli C, Farne A. Peripersonal Space and Body Schema: Two Labels for the Same Con-
cept? Brain Topogr 2009; 21:252—60. doi: 10.1007/s10548-009-0092-7 PMID: 19387818

Rizzolatti G, Scandolara C, Matelli M, Gentilucci M. Afferent properties of periarcuate neurons in
macaqgue monkeys. |. Somatosensory responses. Behav Brain Res 1981; 2:125—46. doi: 10.1016/
0166-4328(81)90052-8 PMID: 7248054

Graziano MS, Gross CG. The representation of extrapersonal space: A possible role for bimodal,
visual-tactile neurons. In: Gazzaniga M, editor. Cogn. Neurosci., Cambridge: MIT Press; 1994, p.
1021-34.

di Pellegrino G, Ladavas E, Farne A. Seeing where your hands are. Nature 1997; 388:730. PMID:
9285584

Ladavas E, di Pellegrino G, Farné a, Zeloni G. Neuropsychological evidence of an integrated visuotac-
tile representation of peripersonal space in humans. J Cogn Neurosci 1998; 10:581-9. doi: 10.1162/
089892998562988 PMID: 9802991

Spence C, Pavani F, Driver J. Crossmodal links between vision and touch in covert endogenous spatial
attention. J Exp Psychol 2000; 26:1298-319.

Spence C, Pavani F, Driver J. Spatial constraints on visual-tactile cross-modal distractor congruency
effects. Cogn Affect Behav Neurosci 2004; 4:148-69. doi: 10.3758/CABN.4.2.148 PMID: 15460922

Holmes NP, Sanabria D, Calvert GA, Spence C. Multisensory interactions follow the hands across the
midline: Evidence from a non-spatial visual-tactile congruency task. Brain Res 2006; 1077:108-15. doi:
10.1016/j.brainres.2005.11.010 PMID: 16483553

Sambo CF, Forster B. An ERP investigation on visuotactile interactions in peripersonal and extraperso-
nal space: evidence for the spatial rule. J Cogn Neurosci 2009; 21:1550-9. doi: 10.1162/jocn.2009.
21109 PMID: 18767919

Teneggi C, Canzoneri E, di Pellegrino G, Serino A. Social Modulation of Peripersonal Space Bound-
aries. Curr Biol 2013; 23:406—11. doi: 10.1016/j.cub.2013.01.043 PMID: 23394831

Serino A, Noel J-P, Galli G, Canzoneri E, Marmaroli P, Lissek H, et al. Body part-centered and full
body-centered peripersonal space representations. Sci Rep 2015; 5:18603. doi: 10.1038/srep18603
PMID: 26690698

Schiff W. Perception of Impending Collision: a Study of Visually Directed Avoidant Behavior. Psychol
Monogr Gen Appl 1965; 79:1-26. doi: 10.1037/h0093887

Schiff W, Caviness JA, Gibson JJ. Persistent fear responses in rhesus monkeys to the optical stimulus
of “looming.” Science 1962; 136:982—3. PMID: 14498362

Tinbergen. The study of instinct. Oxford: Clarendon Press; 1951.

Ball W, Tronick E. Infant responses to impending collision—optical and real. Science 1971;171:818 —
&. PMID: 5541165

Duhamel JR, Bremmer F, Benhamed S, Graf W. Spatial invariance of visual receptive fields in parietal
cortex neurons. Nature 1997; 389:845—-8. PMID: 9349815

Colby CL, Duhamel JR, Goldberg ME. Ventral intraparietal area of the macaque: Anatomic location and
visual response properties. J Neurophysiol 1993; 69:902—14. PMID: 8385201

Bremmer F, Duhamel JR, Ben Hamed S, Graf W. Heading encoding in the macaque ventral intraparie-
tal area (VIP). Eur J Neurosci 2002; 16:1554—68. doi: 10.1046/j.1460-9568.2002.02207.x PMID:
12405970

Cooke DF, Graziano MS. Sensorimotor Integration in the Precentral Gyrus: Polysensory Neurons and
Defensive Movements. J Neurophysiol 2004; 91:1648-60. doi: 10.1152/jn.00955.2003 PMID:
14586035

Kandula M, Hofman D, Dijkerman HC. Visuo-tactile interactions are dependent on the predictive value
of the visual stimulus. Neuropsychologia 2014; 70:358-66. doi: 10.1016/j.neuropsychologia.2014.12.
008 PMID: 25498404

Clery J, Guipponi O, Odouard S, Wardak C, Ben Hamed S. Impact Prediction by Looming Visual Stimuli
Enhances Tactile Detection. J Neurosci 2015; 35:4179-89. doi: 10.1523/JNEUROSCI.3031-14.2015
PMID: 25762665

Brozzoli C, Ehrsson HH, Farné A. Multisensory representation of the space near the hand: from percep-
tion to action and interindividual interactions. Neurosci 2014; 20:122-35. doi: 10.1177/
1073858413511153

Rizzolatti G, Scandolara C, Matelli M, Gentilucci M. Afferent properties of periarcuate neurons in
macaque monkeys. Il. Visual responses. Behav Brain Res 1981; 2:147-63. PMID: 7248055

PLOS ONE | DOI:10.1371/journal.pone.0155864 May 25, 2016 16/17


http://dx.doi.org/10.1007/s10548-009-0092-7
http://www.ncbi.nlm.nih.gov/pubmed/19387818
http://dx.doi.org/10.1016/0166-4328(81)90052-8
http://dx.doi.org/10.1016/0166-4328(81)90052-8
http://www.ncbi.nlm.nih.gov/pubmed/7248054
http://www.ncbi.nlm.nih.gov/pubmed/9285584
http://dx.doi.org/10.1162/089892998562988
http://dx.doi.org/10.1162/089892998562988
http://www.ncbi.nlm.nih.gov/pubmed/9802991
http://dx.doi.org/10.3758/CABN.4.2.148
http://www.ncbi.nlm.nih.gov/pubmed/15460922
http://dx.doi.org/10.1016/j.brainres.2005.11.010
http://www.ncbi.nlm.nih.gov/pubmed/16483553
http://dx.doi.org/10.1162/jocn.2009.21109
http://dx.doi.org/10.1162/jocn.2009.21109
http://www.ncbi.nlm.nih.gov/pubmed/18767919
http://dx.doi.org/10.1016/j.cub.2013.01.043
http://www.ncbi.nlm.nih.gov/pubmed/23394831
http://dx.doi.org/10.1038/srep18603
http://www.ncbi.nlm.nih.gov/pubmed/26690698
http://dx.doi.org/10.1037/h0093887
http://www.ncbi.nlm.nih.gov/pubmed/14498362
http://www.ncbi.nlm.nih.gov/pubmed/5541165
http://www.ncbi.nlm.nih.gov/pubmed/9349815
http://www.ncbi.nlm.nih.gov/pubmed/8385201
http://dx.doi.org/10.1046/j.1460-9568.2002.02207.x
http://www.ncbi.nlm.nih.gov/pubmed/12405970
http://dx.doi.org/10.1152/jn.00955.2003
http://www.ncbi.nlm.nih.gov/pubmed/14586035
http://dx.doi.org/10.1016/j.neuropsychologia.2014.12.008
http://dx.doi.org/10.1016/j.neuropsychologia.2014.12.008
http://www.ncbi.nlm.nih.gov/pubmed/25498404
http://dx.doi.org/10.1523/JNEUROSCI.3031-14.2015
http://www.ncbi.nlm.nih.gov/pubmed/25762665
http://dx.doi.org/10.1177/1073858413511153
http://dx.doi.org/10.1177/1073858413511153
http://www.ncbi.nlm.nih.gov/pubmed/7248055

@’PLOS ‘ ONE

The Influence of Dynamical Visual Stimuli on Nociceptive Processing

59.

60.

61.

62.

63.

64.

65.

66.

67.

Noel J- P, Grivaz P, Marmaroli P, Lissek H, Blanke O, Serino A. Full body action remapping of periper-
sonal space: The case of walking. Neuropsychologia 2015; 70:375-84. doi: 10.1016/j.
neuropsychologia.2014.08.030 PMID: 25193502

Moseley LG, Gallace A, lannetti GD. Spatially defined modulation of skin temperature and hand owner-
ship of both hands in patients with unilateral complex regional pain syndrome. Brain 2012; 135:3676—
86. doi: 10.1093/brain/aws297 PMID: 23250885

Legrain V, Torta DM. Cognitive psychology and neuropsychology of nociception and pain. In: Pickering
G, Gibson S, editors. Pain, Emot. Cogn. a Complex Nexus, Cham: Springer; 2015, p. 3—20.

Cléry J, Guipponi O, Wardak C, Ben Hamed S. Neuronal bases of peripersonal and extrapersonal
spaces, their plasticity and their dynamics: Knowns and unknowns. Neuropsychologia 2015; 70:313—
26. doi: 10.1016/j.neuropsychologia.2014.10.022 PMID: 25447371

Brozzoli C, Gentile G, Petkova VI, Ehrsson HH. fMRI Adaptation Reveals a Cortical Mechanism for the
Coding of Space Near the Hand. J Neurosci 2011; 31:9023-31. doi: 10.1523/JNEUROSCI.1172-11.
2011 PMID: 21677185

Legrain V, lannetti GD, Plaghki L, Mouraux A. The pain matrix reloaded: a salience detection system
for the body. Prog Neurobiol 2011; 93:111-24. doi: 10.1016/j.pneurobio.2010.10.005 PMID: 21040755

Tracey |, Mantyh PW. The Cerebral Signature for Pain Perception and Its Modulation. Neuron 2007;
55:377-91. doi: 10.1016/j.neuron.2007.07.012 PMID: 17678852

Van der Biest L, Legrain V, De Paepe A, Crombez G. Watching what's coming near increases tactile
sensitivity: an experimental investigation. Behav Brain Res 2015; 297:307—14. doi: 10.1016/j.bbr.2015.
10.028 PMID: 26475955

Rossetti A, Romano D, Bolognini N, Maravita A. Dynamic expansion of alert responses to incoming
painful stimuli following tool use. Neuropsychologia 2015; 70:486—-94. doi: 10.1016/j.neuropsychologia.
2015.01.019 PMID: 25595342

PLOS ONE | DOI:10.1371/journal.pone.0155864 May 25, 2016 17/17


http://dx.doi.org/10.1016/j.neuropsychologia.2014.08.030
http://dx.doi.org/10.1016/j.neuropsychologia.2014.08.030
http://www.ncbi.nlm.nih.gov/pubmed/25193502
http://dx.doi.org/10.1093/brain/aws297
http://www.ncbi.nlm.nih.gov/pubmed/23250885
http://dx.doi.org/10.1016/j.neuropsychologia.2014.10.022
http://www.ncbi.nlm.nih.gov/pubmed/25447371
http://dx.doi.org/10.1523/JNEUROSCI.1172-11.2011
http://dx.doi.org/10.1523/JNEUROSCI.1172-11.2011
http://www.ncbi.nlm.nih.gov/pubmed/21677185
http://dx.doi.org/10.1016/j.pneurobio.2010.10.005
http://www.ncbi.nlm.nih.gov/pubmed/21040755
http://dx.doi.org/10.1016/j.neuron.2007.07.012
http://www.ncbi.nlm.nih.gov/pubmed/17678852
http://dx.doi.org/10.1016/j.bbr.2015.10.028
http://dx.doi.org/10.1016/j.bbr.2015.10.028
http://www.ncbi.nlm.nih.gov/pubmed/26475955
http://dx.doi.org/10.1016/j.neuropsychologia.2015.01.019
http://dx.doi.org/10.1016/j.neuropsychologia.2015.01.019
http://www.ncbi.nlm.nih.gov/pubmed/25595342

